NiuTensor 张量计算库使用教程
2024-09-19 13:49:38作者:曹令琨Iris
1. 项目介绍
1.1 项目概述
NiuTensor 是一个由东北大学自然语言处理实验室小牛开源团队开发的轻量级张量计算库。它提供了完整的张量定义及计算功能,可以被用于深度学习相关研究及工业系统的开发。NiuTensor 具有以下特点:
- 简单小巧,易于修改
- C语言编写,代码高度优化
- 同时支持CPU和GPU设备
- 丰富的张量计算接口
- 支持C/C++调用方式
1.2 项目背景
NiuTensor 项目旨在为深度学习相关研究及工业系统的开发提供轻量级的张量定义及计算功能。通过提供高效的计算接口和优化的代码实现,NiuTensor 能够帮助开发者快速构建和训练神经网络模型。
2. 项目快速启动
2.1 环境准备
在开始使用 NiuTensor 之前,请确保您的开发环境满足以下要求:
- 支持 CMake 的编译环境(如 Visual Studio、CLion 等)
- 支持 C++11 及以上标准的编译器
- 如果需要在 GPU 上运行,请安装 CUDA 工具包(版本需求为9.2及以上)
2.2 安装步骤
以下是 NiuTensor 的安装步骤:
2.2.1 下载源码
git clone https://github.com/NiuTrans/NiuTensor.git
cd NiuTensor
2.2.2 使用 CMake 生成项目文件
在项目根目录下执行以下命令生成项目文件:
mkdir build
cd build
cmake ..
2.2.3 编译项目
在 build 目录下执行以下命令编译项目:
make -j
2.2.4 运行测试
编译完成后,可以运行测试用例以验证安装是否成功:
./bin/NiuTensor -test
如果最后输出 OK, Everything is good,则说明本项目配置成功。
3. 应用案例和最佳实践
3.1 语言模型
NiuTensor 可以用于构建和训练语言模型。以下是一个简单的语言模型示例:
#include "XTensor.h"
using namespace nts;
int main() {
// 初始化一个张量,维度为50列*100行,数据类型为X_FLOAT
XTensor tensor;
InitTensor2D(&tensor, 50, 100, X_FLOAT);
// 使用张量进行计算
return 0;
}
3.2 机器翻译
NiuTensor 也可以用于构建机器翻译模型。以下是一个简单的机器翻译模型示例:
#include "XTensor.h"
using namespace nts;
int main() {
// 初始化输入张量
XTensor inputEnc, inputDec;
InitTensor2D(&inputEnc, 50, 100, X_FLOAT);
InitTensor2D(&inputDec, 50, 100, X_FLOAT);
// 构建编码器和解码器
XTensor encoding = MakeEncoder(inputEnc, maskEnc, isTraining);
XTensor decoding = MakeDecoder(inputDec, encoding, maskDec, maskEncDec, isTraining);
// 输出结果
return 0;
}
4. 典型生态项目
4.1 NiuTrans.SMT
NiuTrans.SMT 是一个基于 NiuTensor 的统计机器翻译系统。它利用 NiuTensor 提供的张量计算功能,实现了高效的翻译模型训练和推理。
4.2 NiuTrans.MT
NiuTrans.MT 是一个基于 NiuTensor 的神经机器翻译系统。它利用 NiuTensor 提供的张量计算功能,实现了高效的神经网络模型训练和推理。
4.3 NiuTrans.LM
NiuTrans.LM 是一个基于 NiuTensor 的语言模型训练系统。它利用 NiuTensor 提供的张量计算功能,实现了高效的语言模型训练和推理。
通过以上模块的介绍,您可以快速了解 NiuTensor 的基本功能和使用方法,并开始在您的项目中应用它。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
412
3.17 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
324
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
678
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146