VT-Transformer 开源项目教程
2024-09-13 13:45:30作者:戚魁泉Nursing
1. 项目介绍
VT-Transformer 是一个基于 C++ 的 Transformer 计算框架,专为边缘计算设计。它支持推理和训练,并具有高性能的张量计算能力。该框架的核心特点包括:
- 高性能张量计算:VT-Transformer 提供了一个轻量级的 C++ 张量库,支持混合精度计算(F32, F16, BF16, Q8, Q4, PQ),并兼容多种硬件后端(CUDA, OpenCL, x86, ARM64)。
- 高效的 DAG 引擎:框架采用了一种基于宏扩展的中间表示(IR)格式,支持高效的 DAG(有向无环图)执行,通过即时编译(JIT)实现优化。
- 多功能库:除了张量计算,VT-Transformer 还集成了 C++ 分词器库、KV-Cache 和批处理功能,支持 HTTP/Chatbot 应用开发,并兼容 QWen 和 LLAMA 系列语言模型。
2. 项目快速启动
环境准备
在开始之前,请确保您的系统已经安装了以下依赖:
- CMake
- C++ 编译器(如 GCC 或 Clang)
- CUDA(如果使用 GPU 加速)
克隆项目
首先,克隆 VT-Transformer 项目到本地:
git clone https://github.com/viitrix/vt-transformer.git
cd vt-transformer
构建项目
使用 CMake 构建项目:
mkdir build
cd build
cmake ..
make
运行示例
构建完成后,您可以运行提供的示例程序:
./bin/example
3. 应用案例和最佳实践
应用案例
VT-Transformer 适用于多种应用场景,包括但不限于:
- 边缘计算:在资源受限的边缘设备上进行高效的 Transformer 模型推理。
- 实时系统:用于需要低延迟和高吞吐量的实时应用,如自动驾驶和工业自动化。
- 自然语言处理:支持 QWen 和 LLAMA 系列语言模型的推理和训练,适用于聊天机器人和文本生成任务。
最佳实践
- 优化模型:使用 VT-Transformer 的混合精度计算功能,优化模型以减少计算资源的使用。
- 分布式训练:利用框架的分布式训练支持,加速大规模模型的训练过程。
- 自定义扩展:根据需求扩展框架功能,添加自定义的 IR 节点或优化策略。
4. 典型生态项目
VT-Transformer 可以与其他开源项目结合使用,构建更强大的应用生态系统。以下是一些典型的生态项目:
- TensorRT:NVIDIA 的高性能深度学习推理库,与 VT-Transformer 结合使用可以进一步提升推理性能。
- ONNX Runtime:支持多种硬件加速的深度学习推理引擎,可以与 VT-Transformer 集成,实现跨平台的模型部署。
- Hugging Face Transformers:流行的自然语言处理库,可以与 VT-Transformer 结合,进行模型的训练和推理。
通过这些生态项目的结合,VT-Transformer 可以更好地满足不同应用场景的需求,提供更强大的功能和性能。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355