Apache Fury 0.10.3版本发布:性能优化与兼容性改进
Apache Fury是一个高性能的多语言序列化框架,支持Java、Python、JavaScript等多种编程语言。它通过零拷贝和内存映射等技术实现了极高的序列化性能,特别适合大数据量和高并发的场景。本次发布的0.10.3版本主要针对Java和Python模块进行了多项优化和问题修复。
Java模块的重要改进
兼容性模式下的父类字段处理修复
在0.10.3版本中,修复了一个关于Java兼容性模式的重要问题。当类存在继承关系时,旧版本在兼容性模式下可能会遗漏父类字段的序列化。这个修复确保了在兼容性模式下,父类字段能够被正确识别和序列化。
需要注意的是,这个修复带来了一个不兼容变更:使用0.10.3之前版本序列化的带有父类的Java对象,在0.10.3版本中可能无法正确反序列化。开发者在升级时需要特别注意这一点。
二进制数据处理优化
本次版本对二进制数据的处理进行了多项优化:
-
修复了
readVarUint36Small
方法在缓冲区剩余空间不足时可能读取不完整的问题,确保了无论缓冲区剩余大小如何都能正确读取全部数据位。 -
改进了
FuryObjectInputStream.read
方法的行为,确保当请求长度大于0时,方法永远不会返回0,这符合Java IO规范的要求。 -
优化了
MetaStringBytes
中对空字符串的处理逻辑,避免了潜在的空指针异常。
Protobuf支持增强
新增了对Protobuf消息和字节字符串的序列化支持,这使得Fury可以更好地与现有的Protobuf生态系统集成。开发者现在可以直接将Protobuf生成的消息类通过Fury进行序列化,获得比原生Protobuf序列化更好的性能。
Python模块的改进
Python模块在0.10.3版本中主要解决了构建系统的问题:
-
修复了使用pyproject.toml构建PyFury时的问题,使得安装过程更加标准化和可靠。
-
改进了测试框架,现在能够正确打印测试过程中的异常信息,便于开发者调试问题。
-
确保构建过程中正确安装pyarrow依赖,避免了因依赖缺失导致的构建失败。
构建系统与测试改进
整个项目的构建系统也得到了一些增强:
-
移除了对Node.js 12的支持,保持与最新JavaScript生态系统的同步。
-
在Java模块中,将fury-test-core明确标记为测试依赖,避免了不必要的依赖传递。
-
改进了Bazel构建工具的安装流程,确保构建环境的可靠性。
升级建议
对于现有用户,升级到0.10.3版本时需要注意以下几点:
-
如果项目中使用Java兼容性模式序列化了带有继承关系的类,需要评估这个不兼容变更的影响,必要时进行数据迁移。
-
Python用户可以直接通过pip安装新版本,构建问题已经修复。
-
JavaScript用户需要注意Node.js版本要求已更新,不再支持Node.js 12。
Apache Fury 0.10.3版本通过这些问题修复和功能增强,进一步提升了框架的稳定性和可靠性,为高性能序列化场景提供了更好的支持。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0287- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









