Apache Fury 0.10.3版本发布:性能优化与兼容性改进
Apache Fury是一个高性能的多语言序列化框架,支持Java、Python、JavaScript等多种编程语言。它通过零拷贝和内存映射等技术实现了极高的序列化性能,特别适合大数据量和高并发的场景。本次发布的0.10.3版本主要针对Java和Python模块进行了多项优化和问题修复。
Java模块的重要改进
兼容性模式下的父类字段处理修复
在0.10.3版本中,修复了一个关于Java兼容性模式的重要问题。当类存在继承关系时,旧版本在兼容性模式下可能会遗漏父类字段的序列化。这个修复确保了在兼容性模式下,父类字段能够被正确识别和序列化。
需要注意的是,这个修复带来了一个不兼容变更:使用0.10.3之前版本序列化的带有父类的Java对象,在0.10.3版本中可能无法正确反序列化。开发者在升级时需要特别注意这一点。
二进制数据处理优化
本次版本对二进制数据的处理进行了多项优化:
-
修复了
readVarUint36Small方法在缓冲区剩余空间不足时可能读取不完整的问题,确保了无论缓冲区剩余大小如何都能正确读取全部数据位。 -
改进了
FuryObjectInputStream.read方法的行为,确保当请求长度大于0时,方法永远不会返回0,这符合Java IO规范的要求。 -
优化了
MetaStringBytes中对空字符串的处理逻辑,避免了潜在的空指针异常。
Protobuf支持增强
新增了对Protobuf消息和字节字符串的序列化支持,这使得Fury可以更好地与现有的Protobuf生态系统集成。开发者现在可以直接将Protobuf生成的消息类通过Fury进行序列化,获得比原生Protobuf序列化更好的性能。
Python模块的改进
Python模块在0.10.3版本中主要解决了构建系统的问题:
-
修复了使用pyproject.toml构建PyFury时的问题,使得安装过程更加标准化和可靠。
-
改进了测试框架,现在能够正确打印测试过程中的异常信息,便于开发者调试问题。
-
确保构建过程中正确安装pyarrow依赖,避免了因依赖缺失导致的构建失败。
构建系统与测试改进
整个项目的构建系统也得到了一些增强:
-
移除了对Node.js 12的支持,保持与最新JavaScript生态系统的同步。
-
在Java模块中,将fury-test-core明确标记为测试依赖,避免了不必要的依赖传递。
-
改进了Bazel构建工具的安装流程,确保构建环境的可靠性。
升级建议
对于现有用户,升级到0.10.3版本时需要注意以下几点:
-
如果项目中使用Java兼容性模式序列化了带有继承关系的类,需要评估这个不兼容变更的影响,必要时进行数据迁移。
-
Python用户可以直接通过pip安装新版本,构建问题已经修复。
-
JavaScript用户需要注意Node.js版本要求已更新,不再支持Node.js 12。
Apache Fury 0.10.3版本通过这些问题修复和功能增强,进一步提升了框架的稳定性和可靠性,为高性能序列化场景提供了更好的支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00