Apache Fury 0.10.3版本发布:兼容性优化与关键修复
Apache Fury是一个高性能、跨语言的序列化框架,旨在为分布式系统提供快速、高效的数据交换能力。它支持多种编程语言,包括Java、Python和JavaScript等,特别适合对性能要求苛刻的大数据和高并发场景。
版本核心改进
Java平台关键修复
本次0.10.3版本在Java平台进行了多项重要修复:
-
兼容模式字段修复:解决了在兼容模式下父类字段可能丢失的问题。这个修复虽然带来了二进制兼容性的变化,但确保了数据结构的完整性。对于使用兼容模式序列化带有继承结构的类,从0.10.3版本开始将正确处理所有字段。
-
输入流读取优化:修复了FuryObjectInputStream.read方法在length>0时可能返回0的问题,保证了数据读取的可靠性。
-
变长整数处理:改进了readVarUint36Small方法的实现,确保无论剩余缓冲区大小如何都能正确读取完整位数。
-
空字符串处理:优化了MetaStringBytes中对空字符串的处理逻辑,提高了边缘情况的健壮性。
新功能增强
-
Protobuf支持:新增了对Protobuf消息和字节字符串的序列化支持,使得Fury能够更好地与现有Protobuf生态系统集成。
-
测试依赖优化:明确了fury-test-core作为测试依赖在Fury扩展中的定位,避免了不必要的依赖传递。
跨语言支持改进
-
JavaScript环境:移除了对Node.js 12的支持,保持与现代JavaScript运行环境的同步。
-
Python构建:修复了使用pyproject.toml构建PyFury的问题,简化了Python环境的部署流程。同时改进了测试异常信息的输出,便于问题排查。
升级注意事项
由于修复了兼容模式下父类字段处理的问题,0.10.3版本与此前版本在二进制兼容性上有所变化。对于使用兼容模式序列化带有继承结构的Java/Scala/Kotlin类,需要特别注意:
- 新版本序列化的数据可以被旧版本读取,但旧版本序列化的某些数据可能无法被新版本正确反序列化
- 建议在升级后重新序列化关键数据,或实现自定义的迁移策略
总结
Apache Fury 0.10.3版本通过一系列关键修复和功能增强,进一步提升了框架的稳定性和可用性。特别是对兼容模式下继承结构处理的修正,虽然带来了兼容性变化,但解决了潜在的数据完整性问题。新增的Protobuf支持也为需要与现有Protobuf系统集成的用户提供了便利。对于性能敏感型应用,建议评估升级到该版本以获得更可靠的数据序列化体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00