Redis Operator 使用教程
1. 项目介绍
Redis Operator 是一个基于 Golang 的开源项目,旨在简化在 Kubernetes 上部署和管理 Redis 集群的过程。它支持 Redis 的多种模式,包括单实例、集群、复制和哨兵模式。通过 Redis Operator,用户可以轻松地在 Kubernetes 环境中创建、配置和管理高可用的 Redis 集群,同时提供内置的监控和故障恢复功能。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具:
- Kubernetes 集群(版本 >= 1.18.0)
- Helm(版本 >= 3.0)
2.2 安装 Redis Operator
首先,添加 Helm 仓库并安装 Redis Operator:
# 添加 Helm 仓库
helm repo add ot-helm https://ot-container-kit.github.io/helm-charts/
# 更新 Helm 仓库
helm repo update
# 安装 Redis Operator
helm upgrade --install redis-operator ot-helm/redis-operator \
--create-namespace --namespace ot-operators
2.3 部署 Redis 集群
安装完成后,你可以使用 Helm 部署 Redis 集群:
# 创建 Redis 集群
helm upgrade --install redis-cluster ot-helm/redis-cluster \
--set redisCluster.clusterSize=3 --namespace ot-operators
2.4 验证安装
通过以下命令验证 Redis Operator 和 Redis 集群是否成功部署:
helm test redis-operator --namespace ot-operators
3. 应用案例和最佳实践
3.1 高可用 Redis 集群
Redis Operator 支持自动故障转移和恢复,适用于需要高可用性的场景。例如,在微服务架构中,Redis 作为缓存层,通过 Redis Operator 可以确保缓存服务的持续可用性。
3.2 监控和日志管理
Redis Operator 内置了 Prometheus 监控和 Grafana 仪表盘,用户可以通过这些工具实时监控 Redis 集群的性能和健康状态。最佳实践是定期检查监控数据,及时发现并解决潜在问题。
3.3 安全配置
Redis Operator 支持 TLS 加密和密码保护,确保数据传输的安全性。在生产环境中,建议启用这些安全功能,以防止数据泄露和未授权访问。
4. 典型生态项目
4.1 Prometheus 和 Grafana
Prometheus 和 Grafana 是 Redis Operator 的默认监控工具。Prometheus 负责收集和存储监控数据,Grafana 则提供直观的仪表盘,帮助用户分析和可视化 Redis 集群的性能指标。
4.2 Kubernetes
Redis Operator 完全集成在 Kubernetes 生态系统中,利用 Kubernetes 的自动化管理能力,简化 Redis 集群的部署和维护。通过 Kubernetes 的 CRD(Custom Resource Definition),用户可以自定义 Redis 集群的配置和行为。
4.3 Helm
Helm 是 Kubernetes 的包管理工具,通过 Helm Chart,用户可以轻松地部署和管理 Redis Operator 及其相关组件。Helm 提供了版本控制和依赖管理功能,确保部署的一致性和可重复性。
通过以上步骤,你可以快速上手 Redis Operator,并在 Kubernetes 环境中部署和管理高可用的 Redis 集群。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00