Redis Operator 使用教程
1. 项目介绍
Redis Operator 是一个基于 Golang 的开源项目,旨在简化在 Kubernetes 集群上部署和管理 Redis 集群的过程。它支持 Redis 的多种模式,包括 standalone、cluster、replication 和 sentinel 模式。通过使用 Redis Operator,用户可以轻松地在 Kubernetes 上创建、配置和管理高可用的 Redis 集群,同时提供内置的监控功能。
2. 项目快速启动
2.1 安装 Helm
首先,确保你已经安装了 Helm。如果没有安装,可以通过以下命令安装:
curl https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3 | bash
2.2 添加 Helm 仓库
添加 Redis Operator 的 Helm 仓库:
helm repo add ot-helm https://ot-container-kit.github.io/helm-charts/
2.3 部署 Redis Operator
使用 Helm 部署 Redis Operator:
helm upgrade redis-operator ot-helm/redis-operator \
--install --create-namespace --namespace ot-operators
2.4 创建 Redis 集群
部署完成后,可以通过 Helm 创建 Redis 集群:
helm upgrade redis-cluster ot-helm/redis-cluster \
--set redisCluster.clusterSize=3 --install \
--namespace ot-operators
3. 应用案例和最佳实践
3.1 高可用 Redis 集群
Redis Operator 支持 Redis 集群模式,可以自动处理节点故障和数据复制,确保高可用性。以下是一个典型的 Redis 集群配置:
apiVersion: databases.spotahome.com/v1
kind: RedisFailover
metadata:
name: my-redis-cluster
spec:
sentinel:
replicas: 3
redis:
replicas: 3
3.2 监控与日志
Redis Operator 内置了 Prometheus 监控支持,可以通过 Prometheus 服务发现模式自动抓取 Redis 和 Sentinel 的指标。以下是一个典型的 Prometheus 配置:
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: redis-monitor
labels:
app: redis
spec:
selector:
matchLabels:
app: redis
endpoints:
- port: redis-metrics
4. 典型生态项目
4.1 Prometheus
Prometheus 是一个开源的监控和报警工具包,Redis Operator 通过 Prometheus 服务发现模式,可以自动抓取 Redis 和 Sentinel 的指标,实现实时监控。
4.2 Grafana
Grafana 是一个开源的度量分析和可视化套件,可以与 Prometheus 集成,提供 Redis 集群的实时监控和可视化。
4.3 Kubernetes
Redis Operator 是基于 Kubernetes 的 Operator 框架开发的,充分利用了 Kubernetes 的声明式 API 和自动化管理能力,简化了 Redis 集群的部署和管理。
通过以上步骤,你可以快速上手 Redis Operator,并在 Kubernetes 集群上部署和管理高可用的 Redis 集群。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00