【免费下载】 Marker 开源项目使用教程
2026-01-16 10:34:24作者:齐冠琰
项目介绍
Marker 是一个基于深度学习的文档处理工具,旨在从 PDF 文件中提取文本、表格和代码块,并将其转换为 Markdown 格式。它支持 OCR 处理,能够在 GPU、CPU 或 MPS 上运行,适用于多种文档类型。Marker 的核心功能包括文本提取、布局检测、格式清理和后处理,通过一系列深度学习模型实现高效准确的文档处理。
项目快速启动
安装
首先,克隆项目仓库并安装所需的依赖:
git clone https://github.com/VikParuchuri/marker.git
cd marker
poetry install
配置
在 marker/settings.py 文件中进行必要的配置。可以通过环境变量覆盖默认设置。例如,如果使用 GPU,可以设置 TORCH_DEVICE=cuda 和 INFERENCE_RAM 为 GPU 的 VRAM 大小。
运行
下载基准测试数据并解压,然后运行基准测试脚本:
python benchmark.py data/pdfs data/references report.json --nougat
应用案例和最佳实践
案例一:学术论文处理
Marker 可以用于处理学术论文,提取其中的文本、表格和公式,并转换为 Markdown 格式,便于进一步编辑和分享。
案例二:技术文档转换
对于技术文档,Marker 能够准确提取代码块和表格,保持文档结构的完整性,适用于技术博客和开发文档的自动化处理。
最佳实践
- 优化配置:根据文档类型和硬件资源调整配置,以达到最佳性能。
- 批量处理:利用批量处理功能,提高处理效率。
- 错误处理:在处理过程中加入错误处理机制,确保处理流程的稳定性。
典型生态项目
Surya
Surya 是一个用于页面布局检测的深度学习模型,Marker 使用 Surya 来识别文档中的阅读顺序和布局结构。
Texify
Texify 是一个文本格式清理工具,Marker 利用 Texify 对提取的文本进行格式化和清理,确保输出的 Markdown 文档质量。
Nougat
Nougat 是一个 OCR 处理工具,Marker 在需要时使用 Nougat 进行文本识别,提高文档处理的准确性。
通过结合这些生态项目,Marker 能够提供一个完整的文档处理解决方案,适用于多种应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
235
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705