QwenLM/Qwen3 模型实现function_call功能的技术解析
函数调用功能概述
在QwenLM/Qwen3系列大语言模型中,function_call是一项重要功能,它允许模型在对话过程中识别用户意图并调用预设的外部函数或API。这项功能极大地扩展了大模型的应用场景,使其能够与外部系统进行交互,完成更复杂的任务。
技术实现原理
Qwen1.5-110B-Chat-GPTQ-Int4模型通过特定的提示工程和输出格式控制来实现function_call功能。模型被训练为能够识别何时需要调用外部函数,并以结构化格式输出函数调用请求,包括:
- 函数名称识别
- 参数提取与格式化
- 调用时机判断
- 结果处理逻辑
实现方案
对于Qwen1.5-110B-Chat-GPTQ-Int4这类量化模型,实现function_call需要特别注意以下几点:
-
提示模板设计:需要精心设计系统提示词,明确告知模型可用的函数及其描述、参数要求等信息。
-
输出格式控制:模型需要按照特定JSON格式输出函数调用请求,这对量化模型的输出稳定性提出了挑战。
-
后处理逻辑:需要开发配套的解析器来处理模型的原始输出,验证函数调用请求的合法性。
-
量化影响评估:由于是4-bit量化模型,需要测试量化对函数调用准确率的影响,必要时进行调整。
最佳实践建议
-
对于复杂函数调用场景,建议采用多轮对话逐步收集参数,而非要求模型一次性提供完整参数。
-
为关键函数设置严格的参数校验逻辑,防止因量化误差导致的参数错误。
-
考虑实现函数调用回退机制,当模型输出不符合预期时能够自动修正或提示用户澄清。
-
对于性能要求高的场景,可以预先定义好函数调用模板,减少模型自由发挥带来的不确定性。
性能优化方向
针对量化模型的特点,可以从以下几个方向优化function_call性能:
-
精简函数描述,使用模型更容易理解的简洁语言。
-
优先使用模型熟悉的参数类型和格式。
-
实现参数自动补全功能,减轻模型负担。
-
建立函数调用缓存机制,避免重复计算。
通过以上技术方案和优化措施,即使在量化模型上也能实现稳定可靠的function_call功能,为构建基于大模型的智能应用提供坚实基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00