D2-Net开源项目使用手册
2024-10-10 14:15:09作者:何举烈Damon
项目概述
D2-Net是一个可训练的CNN模型,用于联合检测和描述局部特征。这个项目基于[Mihai Dusmanu et al., CVPR 2019]的研究成果,实现了在图像中有效识别并描述关键点的功能。本指南将引导您了解D2-Net的目录结构、启动文件和配置相关知识。
目录结构及介绍
D2-Net的项目结构设计清晰,便于开发者快速上手。以下是其主要目录和文件的简要说明:
d2-net/
├── extract_features.py # 提取图片特征的脚本
├── extract_hesaff.m # 使用HESAFF方法提取特征的MATLAB脚本(如果适用)
├── extract_kapture.py # 针对kapture格式数据集的特征提取脚本
├── image_list_hpatches_sequences.txt # 示例图像列表
├── image_list_qualitative.txt # 用于质量评估的图像列表
├── lib/ # 包含核心算法实现的代码库
├── megadepth_utils/ # 处理MegaDepth数据集的专用工具
├── patches_sequences/ # 存放特定序列的补丁数据(如果有)
├── qualitative/ # 质量测试相关的数据或结果
├── README.md # 项目主读我文件
├── train.py # 训练模型的脚本
├── .gitignore # Git忽略文件配置
└── LICENSE # 开源许可证文件
# 模型权重及其他重要资源通常位于外部链接提供的下载目录中
启动文件介绍
主要脚本
- extract_features.py: 这是核心功能脚本,允许用户从给定的图像列表中提取D2-Net特征。支持单尺度和多尺度特征提取,适用于不同的GPU内存配置。
- train.py: 训练新模型的脚本,需要预先处理的数据集以及相应的配置设置。它允许用户根据MegaDepth数据集训练自己的D2-Net模型。
辅助脚本
- extract_hesaff.m, extract_kapture.py: 分别提供了特殊场景下特征提取的支持,前者针对MATLAB环境,后者适应于kapture格式的数据处理。
配置文件介绍
D2-Net项目并未直接提供一个典型的“配置文件”如.ini或.yaml,但其配置主要是通过命令行参数进行的。例如,在运行extract_features.py或train.py时,您可以通过添加参数来调整行为,如指定模型路径、是否启用多尺度处理等。对于更复杂的配置需求,如模型超参数的微调,通常是在脚本内部或通过命令行进行指定的。
虽然没有独立的配置文件,但在执行上述脚本之前,确保满足依赖项(如Python版本、PyTorch、Caffe模型权重等)是配置过程中非常重要的一步。此外,对于训练流程,数据预处理步骤和环境变量的设置也间接构成了“配置”的一部分。
请注意,直接修改源代码中的常量或变量值可以视为一种非常规的“配置”方式,但这并不推荐,除非你对项目有深入的理解。
以上就是D2-Net的基本使用手册,包括了必要的项目导航和启动指导。开始您的D2-Net之旅前,请仔细阅读项目主页上的最新说明,以获取任何更新的信息。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895