D2-Net开源项目使用手册
2024-10-10 06:59:56作者:何举烈Damon
项目概述
D2-Net是一个可训练的CNN模型,用于联合检测和描述局部特征。这个项目基于[Mihai Dusmanu et al., CVPR 2019]的研究成果,实现了在图像中有效识别并描述关键点的功能。本指南将引导您了解D2-Net的目录结构、启动文件和配置相关知识。
目录结构及介绍
D2-Net的项目结构设计清晰,便于开发者快速上手。以下是其主要目录和文件的简要说明:
d2-net/
├── extract_features.py # 提取图片特征的脚本
├── extract_hesaff.m # 使用HESAFF方法提取特征的MATLAB脚本(如果适用)
├── extract_kapture.py # 针对kapture格式数据集的特征提取脚本
├── image_list_hpatches_sequences.txt # 示例图像列表
├── image_list_qualitative.txt # 用于质量评估的图像列表
├── lib/ # 包含核心算法实现的代码库
├── megadepth_utils/ # 处理MegaDepth数据集的专用工具
├── patches_sequences/ # 存放特定序列的补丁数据(如果有)
├── qualitative/ # 质量测试相关的数据或结果
├── README.md # 项目主读我文件
├── train.py # 训练模型的脚本
├── .gitignore # Git忽略文件配置
└── LICENSE # 开源许可证文件
# 模型权重及其他重要资源通常位于外部链接提供的下载目录中
启动文件介绍
主要脚本
- extract_features.py: 这是核心功能脚本,允许用户从给定的图像列表中提取D2-Net特征。支持单尺度和多尺度特征提取,适用于不同的GPU内存配置。
- train.py: 训练新模型的脚本,需要预先处理的数据集以及相应的配置设置。它允许用户根据MegaDepth数据集训练自己的D2-Net模型。
辅助脚本
- extract_hesaff.m, extract_kapture.py: 分别提供了特殊场景下特征提取的支持,前者针对MATLAB环境,后者适应于kapture格式的数据处理。
配置文件介绍
D2-Net项目并未直接提供一个典型的“配置文件”如.ini或.yaml,但其配置主要是通过命令行参数进行的。例如,在运行extract_features.py或train.py时,您可以通过添加参数来调整行为,如指定模型路径、是否启用多尺度处理等。对于更复杂的配置需求,如模型超参数的微调,通常是在脚本内部或通过命令行进行指定的。
虽然没有独立的配置文件,但在执行上述脚本之前,确保满足依赖项(如Python版本、PyTorch、Caffe模型权重等)是配置过程中非常重要的一步。此外,对于训练流程,数据预处理步骤和环境变量的设置也间接构成了“配置”的一部分。
请注意,直接修改源代码中的常量或变量值可以视为一种非常规的“配置”方式,但这并不推荐,除非你对项目有深入的理解。
以上就是D2-Net的基本使用手册,包括了必要的项目导航和启动指导。开始您的D2-Net之旅前,请仔细阅读项目主页上的最新说明,以获取任何更新的信息。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
426
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
335
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
265
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
25
30