LISRD 项目使用教程
1. 项目介绍
LISRD(Local Invariance Selection at Runtime for Descriptors)是一个用于图像特征描述符的开源项目。该项目的主要目标是利用具有不同不变性(如旋转不变性或光照不变性)的描述符,并在运行时选择最适合的不变性来进行图像匹配。LISRD 通过在线选择最合适的不变性,克服了传统特征描述符在泛化能力和区分能力之间的权衡问题。
LISRD 的核心思想是通过联合学习多个具有不同不变性的局部描述符,并使用元描述符来编码图像区域的变异性。这些元描述符的相似性用于在匹配时选择最合适的不变性。LISRD 在多个具有挑战性的数据集上表现优异,特别是在处理光照变化和视角变化的任务中。
2. 项目快速启动
2.1 安装
首先,克隆 LISRD 仓库并安装所需的依赖项。建议在 Python 环境中使用 venv
或 conda
。
git clone --recurse-submodules https://github.com/rpautrat/LISRD.git
cd LISRD
make install
2.2 训练模型
LISRD 提供了训练自定义模型的功能。训练参数应包含在配置文件中,配置文件位于 lisrd/configs
目录下。以下是训练模型的通用脚本:
python -m lisrd.experiment train <path_to_your_config_file> <path_to_your_experiment>
例如,训练 LISRD 使用论文中的四种不变性类型:
python -m lisrd.experiment train lisrd/configs/lisrd.yaml ~/Documents/experiments/My_experiment
2.3 使用预训练模型
LISRD 提供了两个预训练模型:
lisrd_aachen
: 论文中使用的版本,训练数据包括 MS COCO 数据集、Multi-Illumination Images in the Wild 和 Aachen 数据集的增强图像。lisrd_vidit
: 新版本,训练数据包括 MS COCO 数据集、Multi-Illumination Images in the Wild 和 Virtual Image Dataset for Illumination Transfer (VIDIT)。
使用预训练模型的示例:
python -m lisrd.export_features <path_to_a_txt_file_listing_all_your_images> lisrd --checkpoint <path_to_checkpoint> --keypoints sift --num_kp 2000
3. 应用案例和最佳实践
3.1 图像匹配
LISRD 在图像匹配任务中表现出色,特别是在处理光照变化和视角变化的场景中。通过选择合适的不变性,LISRD 能够提高匹配的准确性和鲁棒性。
3.2 增强现实
在增强现实应用中,LISRD 可以用于实时图像匹配,确保虚拟对象在不同光照和视角下的稳定性和一致性。
3.3 自动驾驶
在自动驾驶领域,LISRD 可以用于道路场景的特征匹配,帮助车辆在不同光照条件下识别和跟踪道路标志和障碍物。
4. 典型生态项目
4.1 SuperPoint
SuperPoint 是一个用于图像特征提取的深度学习模型,LISRD 可以与 SuperPoint 结合使用,进一步提升图像匹配的性能。
4.2 D2-Net
D2-Net 是一个用于图像特征提取和匹配的深度学习模型,LISRD 可以与 D2-Net 结合使用,增强在复杂场景中的匹配能力。
4.3 OpenCV
OpenCV 是一个广泛使用的计算机视觉库,LISRD 可以与 OpenCV 结合使用,提供更强大的图像处理和分析功能。
通过这些生态项目的结合,LISRD 可以在更广泛的场景中发挥其优势,提升图像处理和分析的效率和准确性。
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09