LISRD 项目使用教程
1. 项目介绍
LISRD(Local Invariance Selection at Runtime for Descriptors)是一个用于图像特征描述符的开源项目。该项目的主要目标是利用具有不同不变性(如旋转不变性或光照不变性)的描述符,并在运行时选择最适合的不变性来进行图像匹配。LISRD 通过在线选择最合适的不变性,克服了传统特征描述符在泛化能力和区分能力之间的权衡问题。
LISRD 的核心思想是通过联合学习多个具有不同不变性的局部描述符,并使用元描述符来编码图像区域的变异性。这些元描述符的相似性用于在匹配时选择最合适的不变性。LISRD 在多个具有挑战性的数据集上表现优异,特别是在处理光照变化和视角变化的任务中。
2. 项目快速启动
2.1 安装
首先,克隆 LISRD 仓库并安装所需的依赖项。建议在 Python 环境中使用 venv
或 conda
。
git clone --recurse-submodules https://github.com/rpautrat/LISRD.git
cd LISRD
make install
2.2 训练模型
LISRD 提供了训练自定义模型的功能。训练参数应包含在配置文件中,配置文件位于 lisrd/configs
目录下。以下是训练模型的通用脚本:
python -m lisrd.experiment train <path_to_your_config_file> <path_to_your_experiment>
例如,训练 LISRD 使用论文中的四种不变性类型:
python -m lisrd.experiment train lisrd/configs/lisrd.yaml ~/Documents/experiments/My_experiment
2.3 使用预训练模型
LISRD 提供了两个预训练模型:
lisrd_aachen
: 论文中使用的版本,训练数据包括 MS COCO 数据集、Multi-Illumination Images in the Wild 和 Aachen 数据集的增强图像。lisrd_vidit
: 新版本,训练数据包括 MS COCO 数据集、Multi-Illumination Images in the Wild 和 Virtual Image Dataset for Illumination Transfer (VIDIT)。
使用预训练模型的示例:
python -m lisrd.export_features <path_to_a_txt_file_listing_all_your_images> lisrd --checkpoint <path_to_checkpoint> --keypoints sift --num_kp 2000
3. 应用案例和最佳实践
3.1 图像匹配
LISRD 在图像匹配任务中表现出色,特别是在处理光照变化和视角变化的场景中。通过选择合适的不变性,LISRD 能够提高匹配的准确性和鲁棒性。
3.2 增强现实
在增强现实应用中,LISRD 可以用于实时图像匹配,确保虚拟对象在不同光照和视角下的稳定性和一致性。
3.3 自动驾驶
在自动驾驶领域,LISRD 可以用于道路场景的特征匹配,帮助车辆在不同光照条件下识别和跟踪道路标志和障碍物。
4. 典型生态项目
4.1 SuperPoint
SuperPoint 是一个用于图像特征提取的深度学习模型,LISRD 可以与 SuperPoint 结合使用,进一步提升图像匹配的性能。
4.2 D2-Net
D2-Net 是一个用于图像特征提取和匹配的深度学习模型,LISRD 可以与 D2-Net 结合使用,增强在复杂场景中的匹配能力。
4.3 OpenCV
OpenCV 是一个广泛使用的计算机视觉库,LISRD 可以与 OpenCV 结合使用,提供更强大的图像处理和分析功能。
通过这些生态项目的结合,LISRD 可以在更广泛的场景中发挥其优势,提升图像处理和分析的效率和准确性。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









