LISRD 项目使用教程
1. 项目介绍
LISRD(Local Invariance Selection at Runtime for Descriptors)是一个用于图像特征描述符的开源项目。该项目的主要目标是利用具有不同不变性(如旋转不变性或光照不变性)的描述符,并在运行时选择最适合的不变性来进行图像匹配。LISRD 通过在线选择最合适的不变性,克服了传统特征描述符在泛化能力和区分能力之间的权衡问题。
LISRD 的核心思想是通过联合学习多个具有不同不变性的局部描述符,并使用元描述符来编码图像区域的变异性。这些元描述符的相似性用于在匹配时选择最合适的不变性。LISRD 在多个具有挑战性的数据集上表现优异,特别是在处理光照变化和视角变化的任务中。
2. 项目快速启动
2.1 安装
首先,克隆 LISRD 仓库并安装所需的依赖项。建议在 Python 环境中使用 venv 或 conda。
git clone --recurse-submodules https://github.com/rpautrat/LISRD.git
cd LISRD
make install
2.2 训练模型
LISRD 提供了训练自定义模型的功能。训练参数应包含在配置文件中,配置文件位于 lisrd/configs 目录下。以下是训练模型的通用脚本:
python -m lisrd.experiment train <path_to_your_config_file> <path_to_your_experiment>
例如,训练 LISRD 使用论文中的四种不变性类型:
python -m lisrd.experiment train lisrd/configs/lisrd.yaml ~/Documents/experiments/My_experiment
2.3 使用预训练模型
LISRD 提供了两个预训练模型:
lisrd_aachen: 论文中使用的版本,训练数据包括 MS COCO 数据集、Multi-Illumination Images in the Wild 和 Aachen 数据集的增强图像。lisrd_vidit: 新版本,训练数据包括 MS COCO 数据集、Multi-Illumination Images in the Wild 和 Virtual Image Dataset for Illumination Transfer (VIDIT)。
使用预训练模型的示例:
python -m lisrd.export_features <path_to_a_txt_file_listing_all_your_images> lisrd --checkpoint <path_to_checkpoint> --keypoints sift --num_kp 2000
3. 应用案例和最佳实践
3.1 图像匹配
LISRD 在图像匹配任务中表现出色,特别是在处理光照变化和视角变化的场景中。通过选择合适的不变性,LISRD 能够提高匹配的准确性和鲁棒性。
3.2 增强现实
在增强现实应用中,LISRD 可以用于实时图像匹配,确保虚拟对象在不同光照和视角下的稳定性和一致性。
3.3 自动驾驶
在自动驾驶领域,LISRD 可以用于道路场景的特征匹配,帮助车辆在不同光照条件下识别和跟踪道路标志和障碍物。
4. 典型生态项目
4.1 SuperPoint
SuperPoint 是一个用于图像特征提取的深度学习模型,LISRD 可以与 SuperPoint 结合使用,进一步提升图像匹配的性能。
4.2 D2-Net
D2-Net 是一个用于图像特征提取和匹配的深度学习模型,LISRD 可以与 D2-Net 结合使用,增强在复杂场景中的匹配能力。
4.3 OpenCV
OpenCV 是一个广泛使用的计算机视觉库,LISRD 可以与 OpenCV 结合使用,提供更强大的图像处理和分析功能。
通过这些生态项目的结合,LISRD 可以在更广泛的场景中发挥其优势,提升图像处理和分析的效率和准确性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00