OpenAI Agents SDK 中服务会话内存管理的技术实践
2025-05-25 10:12:49作者:明树来
在基于OpenAI Agents SDK开发智能客服系统时,会话内存管理是一个关键的技术挑战。本文将从架构设计角度探讨如何在FastAPI服务中高效实现会话记忆功能。
会话内存的核心需求
现代对话系统需要维护上下文记忆能力,这要求我们解决两个核心问题:
- 如何持久化存储历史对话记录
- 如何将存储的记录转换为SDK可用的输入格式
数据库存储方案
推荐采用数据库作为持久化存储方案,典型实现包含以下组件:
# 伪代码示例
class ChatMemoryManager:
def __init__(self, db_client):
self.db = db_client
def save_session(self, user_id, session_id, messages):
"""存储对话记录"""
self.db.upsert(
key={"user_id": user_id, "session_id": session_id},
data={"messages": messages}
)
def load_session(self, user_id, session_id, limit=20):
"""加载最近N条对话记录"""
return self.db.query(
key={"user_id": user_id, "session_id": session_id},
limit=limit
)
数据类型转换策略
OpenAI Agents SDK涉及两类核心数据结构:
-
运行输出类型(RunItem):
- 包含消息输出、工具调用、推理过程等复合类型
- 代表Agent执行后产生的各种输出项
-
响应输入类型(ResponseInputItem):
- 包含消息参数、工具调用参数等功能性输入
- 用于构建新的Agent执行上下文
建议采用适配器模式实现类型转换:
class ItemConverter:
@staticmethod
def runitem_to_input(run_item: RunItem) -> ResponseInputItem:
"""将运行结果转换为可重用的输入项"""
if isinstance(run_item, MessageOutputItem):
return EasyInputMessageParam(
role=run_item.role,
content=run_item.content
)
# 其他类型转换逻辑...
工程实践建议
-
数据序列化:
- 存储原始JSON结构而非SDK对象
- 使用版本控制字段应对SDK更新
-
缓存策略:
- 对活跃会话采用内存缓存
- 设置合理的TTL避免内存泄漏
-
性能优化:
- 对长对话采用分页加载
- 实现增量更新机制
完整服务集成示例
@app.post("/chat")
async def handle_chat(request: ChatRequest):
# 加载历史记录
history = memory_manager.load_session(
request.user_id,
request.session_id
)
# 执行Agent
result = runner.run(
input_items=history + [request.message],
...
)
# 保存新产生的交互记录
memory_manager.save_session(
request.user_id,
request.session_id,
result.new_items
)
return format_response(result)
通过这种架构设计,开发者可以构建出既保持会话连续性,又能灵活应对业务需求变化的智能对话服务。关键是要在SDK数据类型和业务存储格式之间建立清晰的转换边界,这为后续的功能扩展和维护提供了良好的基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355