OpenAI Agents SDK 中服务会话内存管理的技术实践
2025-05-25 10:12:49作者:明树来
在基于OpenAI Agents SDK开发智能客服系统时,会话内存管理是一个关键的技术挑战。本文将从架构设计角度探讨如何在FastAPI服务中高效实现会话记忆功能。
会话内存的核心需求
现代对话系统需要维护上下文记忆能力,这要求我们解决两个核心问题:
- 如何持久化存储历史对话记录
- 如何将存储的记录转换为SDK可用的输入格式
数据库存储方案
推荐采用数据库作为持久化存储方案,典型实现包含以下组件:
# 伪代码示例
class ChatMemoryManager:
def __init__(self, db_client):
self.db = db_client
def save_session(self, user_id, session_id, messages):
"""存储对话记录"""
self.db.upsert(
key={"user_id": user_id, "session_id": session_id},
data={"messages": messages}
)
def load_session(self, user_id, session_id, limit=20):
"""加载最近N条对话记录"""
return self.db.query(
key={"user_id": user_id, "session_id": session_id},
limit=limit
)
数据类型转换策略
OpenAI Agents SDK涉及两类核心数据结构:
-
运行输出类型(RunItem):
- 包含消息输出、工具调用、推理过程等复合类型
- 代表Agent执行后产生的各种输出项
-
响应输入类型(ResponseInputItem):
- 包含消息参数、工具调用参数等功能性输入
- 用于构建新的Agent执行上下文
建议采用适配器模式实现类型转换:
class ItemConverter:
@staticmethod
def runitem_to_input(run_item: RunItem) -> ResponseInputItem:
"""将运行结果转换为可重用的输入项"""
if isinstance(run_item, MessageOutputItem):
return EasyInputMessageParam(
role=run_item.role,
content=run_item.content
)
# 其他类型转换逻辑...
工程实践建议
-
数据序列化:
- 存储原始JSON结构而非SDK对象
- 使用版本控制字段应对SDK更新
-
缓存策略:
- 对活跃会话采用内存缓存
- 设置合理的TTL避免内存泄漏
-
性能优化:
- 对长对话采用分页加载
- 实现增量更新机制
完整服务集成示例
@app.post("/chat")
async def handle_chat(request: ChatRequest):
# 加载历史记录
history = memory_manager.load_session(
request.user_id,
request.session_id
)
# 执行Agent
result = runner.run(
input_items=history + [request.message],
...
)
# 保存新产生的交互记录
memory_manager.save_session(
request.user_id,
request.session_id,
result.new_items
)
return format_response(result)
通过这种架构设计,开发者可以构建出既保持会话连续性,又能灵活应对业务需求变化的智能对话服务。关键是要在SDK数据类型和业务存储格式之间建立清晰的转换边界,这为后续的功能扩展和维护提供了良好的基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137