OpenAI Agents Python项目中Few-shot Prompting的实现技巧
2025-05-25 18:25:49作者:钟日瑜
Few-shot prompting(少样本提示)是一种强大的技术,能够有效控制AI模型的输出行为。在OpenAI Agents Python项目中,开发者们经常需要探讨如何最佳地实现这一技术。
传统Few-shot Prompting实现方式
在标准的OpenAI API调用中,开发者通常采用以下方式实现few-shot prompting:
few_shot_examples = [
{"role": "user", "content": "教我有关于耐心的知识"},
{"role": "assistant", "content": "雕刻最深山谷的河流源自涓涓细流..."}
]
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": system_prompt},
*few_shot_examples,
{"role": "user", "content": user_input}
]
)
这种方式通过直接在消息列表中插入示例对话,为模型提供上下文学习样本。
Agents SDK中的实现挑战
当转向使用OpenAI Agents SDK时,开发者面临新的实现挑战:
- Agent声明阶段限制:在定义Agent时,无法直接插入多条消息作为few-shot示例
- 上下文保持问题:在复杂的多Agent工作流中,示例可能无法正确传递给后续Agent
可行的解决方案
经过实践验证,目前有两种主要实现方案:
方案一:系统提示中包含示例
将few-shot示例直接嵌入系统提示中:
system_prompt = """
你是一个富有诗意的AI助手。以下是示例对话:
用户:教我有关于耐心的知识
AI:雕刻最深山谷的河流源自涓涓细流...
请按照类似风格回答。
"""
优点:
- 实现简单直接
- 适用于所有后续Agent
- 保持上下文一致性
缺点:
- 可能增加提示长度
- 需要更精细的提示工程
方案二:Runner输入中添加示例
input_items = [
{"role": "user", "content": "教我有关于耐心的知识"},
{"role": "assistant", "content": "雕刻最深山谷的河流源自涓涓细流..."},
{"role": "user", "content": user_input}
]
result = await Runner.run(agent, input_items)
注意事项:
- 此方法仅适用于流程中的第一个Agent
- 后续Agent间的交接可能丢失这些示例
- 需要确保消息格式完全匹配SDK要求
高级技巧与最佳实践
- 示例选择策略:精心挑选最具代表性的对话样本,避免信息过载
- 格式一致性:保持few-shot示例与预期输出格式高度一致
- 性能监控:注意提示长度对响应时间和成本的影响
- 模块化设计:将few-shot示例存储在单独文件中,便于维护和更新
常见问题解决
开发者可能会遇到"Item not found"错误,这通常是由于:
- 使用了无效的消息ID格式
- 消息结构不符合SDK要求
- 角色定义不准确
解决方案是严格遵循SDK要求的消息格式,避免手动构造复杂的消息结构。
总结
在OpenAI Agents Python项目中实现few-shot prompting需要根据具体场景选择合适的方法。对于简单场景,系统提示内嵌示例是最稳妥的方案;而对于需要动态示例的复杂场景,则需要谨慎处理Runner输入。理解这些技术细节将帮助开发者更好地控制AI代理的行为,打造更精准的对话体验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355