OpenAI Agents Python项目中Few-shot Prompting的实现技巧
2025-05-25 01:05:50作者:钟日瑜
Few-shot prompting(少样本提示)是一种强大的技术,能够有效控制AI模型的输出行为。在OpenAI Agents Python项目中,开发者们经常需要探讨如何最佳地实现这一技术。
传统Few-shot Prompting实现方式
在标准的OpenAI API调用中,开发者通常采用以下方式实现few-shot prompting:
few_shot_examples = [
{"role": "user", "content": "教我有关于耐心的知识"},
{"role": "assistant", "content": "雕刻最深山谷的河流源自涓涓细流..."}
]
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": system_prompt},
*few_shot_examples,
{"role": "user", "content": user_input}
]
)
这种方式通过直接在消息列表中插入示例对话,为模型提供上下文学习样本。
Agents SDK中的实现挑战
当转向使用OpenAI Agents SDK时,开发者面临新的实现挑战:
- Agent声明阶段限制:在定义Agent时,无法直接插入多条消息作为few-shot示例
- 上下文保持问题:在复杂的多Agent工作流中,示例可能无法正确传递给后续Agent
可行的解决方案
经过实践验证,目前有两种主要实现方案:
方案一:系统提示中包含示例
将few-shot示例直接嵌入系统提示中:
system_prompt = """
你是一个富有诗意的AI助手。以下是示例对话:
用户:教我有关于耐心的知识
AI:雕刻最深山谷的河流源自涓涓细流...
请按照类似风格回答。
"""
优点:
- 实现简单直接
- 适用于所有后续Agent
- 保持上下文一致性
缺点:
- 可能增加提示长度
- 需要更精细的提示工程
方案二:Runner输入中添加示例
input_items = [
{"role": "user", "content": "教我有关于耐心的知识"},
{"role": "assistant", "content": "雕刻最深山谷的河流源自涓涓细流..."},
{"role": "user", "content": user_input}
]
result = await Runner.run(agent, input_items)
注意事项:
- 此方法仅适用于流程中的第一个Agent
- 后续Agent间的交接可能丢失这些示例
- 需要确保消息格式完全匹配SDK要求
高级技巧与最佳实践
- 示例选择策略:精心挑选最具代表性的对话样本,避免信息过载
- 格式一致性:保持few-shot示例与预期输出格式高度一致
- 性能监控:注意提示长度对响应时间和成本的影响
- 模块化设计:将few-shot示例存储在单独文件中,便于维护和更新
常见问题解决
开发者可能会遇到"Item not found"错误,这通常是由于:
- 使用了无效的消息ID格式
- 消息结构不符合SDK要求
- 角色定义不准确
解决方案是严格遵循SDK要求的消息格式,避免手动构造复杂的消息结构。
总结
在OpenAI Agents Python项目中实现few-shot prompting需要根据具体场景选择合适的方法。对于简单场景,系统提示内嵌示例是最稳妥的方案;而对于需要动态示例的复杂场景,则需要谨慎处理Runner输入。理解这些技术细节将帮助开发者更好地控制AI代理的行为,打造更精准的对话体验。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
52
461

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.09 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
607
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4