OpenAI Agents Python项目中Few-shot Prompting的实现技巧
2025-05-25 17:13:56作者:钟日瑜
Few-shot prompting(少样本提示)是一种强大的技术,能够有效控制AI模型的输出行为。在OpenAI Agents Python项目中,开发者们经常需要探讨如何最佳地实现这一技术。
传统Few-shot Prompting实现方式
在标准的OpenAI API调用中,开发者通常采用以下方式实现few-shot prompting:
few_shot_examples = [
{"role": "user", "content": "教我有关于耐心的知识"},
{"role": "assistant", "content": "雕刻最深山谷的河流源自涓涓细流..."}
]
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": system_prompt},
*few_shot_examples,
{"role": "user", "content": user_input}
]
)
这种方式通过直接在消息列表中插入示例对话,为模型提供上下文学习样本。
Agents SDK中的实现挑战
当转向使用OpenAI Agents SDK时,开发者面临新的实现挑战:
- Agent声明阶段限制:在定义Agent时,无法直接插入多条消息作为few-shot示例
- 上下文保持问题:在复杂的多Agent工作流中,示例可能无法正确传递给后续Agent
可行的解决方案
经过实践验证,目前有两种主要实现方案:
方案一:系统提示中包含示例
将few-shot示例直接嵌入系统提示中:
system_prompt = """
你是一个富有诗意的AI助手。以下是示例对话:
用户:教我有关于耐心的知识
AI:雕刻最深山谷的河流源自涓涓细流...
请按照类似风格回答。
"""
优点:
- 实现简单直接
- 适用于所有后续Agent
- 保持上下文一致性
缺点:
- 可能增加提示长度
- 需要更精细的提示工程
方案二:Runner输入中添加示例
input_items = [
{"role": "user", "content": "教我有关于耐心的知识"},
{"role": "assistant", "content": "雕刻最深山谷的河流源自涓涓细流..."},
{"role": "user", "content": user_input}
]
result = await Runner.run(agent, input_items)
注意事项:
- 此方法仅适用于流程中的第一个Agent
- 后续Agent间的交接可能丢失这些示例
- 需要确保消息格式完全匹配SDK要求
高级技巧与最佳实践
- 示例选择策略:精心挑选最具代表性的对话样本,避免信息过载
- 格式一致性:保持few-shot示例与预期输出格式高度一致
- 性能监控:注意提示长度对响应时间和成本的影响
- 模块化设计:将few-shot示例存储在单独文件中,便于维护和更新
常见问题解决
开发者可能会遇到"Item not found"错误,这通常是由于:
- 使用了无效的消息ID格式
- 消息结构不符合SDK要求
- 角色定义不准确
解决方案是严格遵循SDK要求的消息格式,避免手动构造复杂的消息结构。
总结
在OpenAI Agents Python项目中实现few-shot prompting需要根据具体场景选择合适的方法。对于简单场景,系统提示内嵌示例是最稳妥的方案;而对于需要动态示例的复杂场景,则需要谨慎处理Runner输入。理解这些技术细节将帮助开发者更好地控制AI代理的行为,打造更精准的对话体验。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
436
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
283
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
273
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871