Qwen3微调过程中Loss为零问题的分析与解决
问题现象
在使用Qwen3官方提供的微调工具finetune.py和finetune.sh进行模型微调时,部分开发者遇到了一个奇怪的现象:训练过程中loss值始终为零,同时learning_rate也显示为零。从日志中可以观察到,虽然训练过程看似正常进行,但每次迭代的输出都显示"loss: 0.0"和"grad_norm: 0.0",并且伴随"tried to get lr value before scheduler/optimizer started stepping, returning lr=0"的提示信息。
问题分析
这种现象通常表明模型在训练过程中没有进行有效的参数更新。可能的原因包括:
-
学习率调度器初始化问题:日志中反复出现的"tried to get lr value before scheduler/optimizer started stepping"提示表明学习率调度器可能没有正确初始化。
-
梯度计算异常:grad_norm为零说明梯度没有被正确计算或传播,这会导致参数无法更新。
-
微调脚本修改不当:用户对官方提供的finetune.py脚本进行了自定义修改,可能无意中破坏了训练流程的关键部分。
-
数据预处理问题:虽然用户尝试了不同的数据集,但可能存在数据格式或预处理上的共性问题。
解决方案
经过实践验证,最有效的解决方法是:
-
恢复原始finetune.py脚本:将修改过的finetune.py还原为官方提供的原始版本。许多开发者发现,仅这一操作就能解决问题。
-
仅修改配置参数:后续的调整应集中在finetune.sh脚本和deepspeed_config.json配置文件中进行,包括:
- 学习率设置
- 批量大小
- 训练步数
- 优化器参数等
-
检查数据格式:确保输入数据符合Qwen3要求的格式规范,特别是jsonl文件的结构和内容。
经验总结
这个案例给我们的启示是:
-
在使用开源项目提供的工具时,应先确保基础脚本的完整性,再进行逐步的定制化修改。
-
当遇到训练异常时,采用"回归基础"的方法往往能快速定位问题 - 即先恢复到已知可工作的配置,再逐步添加修改。
-
深度学习训练过程中的零loss问题可能有多种原因,需要系统性地检查数据、模型架构和训练流程的各个环节。
Qwen3作为一个大型语言模型项目,其微调流程涉及复杂的参数配置和优化过程。开发者在进行自定义微调时,应当充分理解各配置参数的含义,并采用增量式的修改策略,以便快速定位和解决问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00