Qwen3微调过程中Loss为零问题的分析与解决
问题现象
在使用Qwen3官方提供的微调工具finetune.py和finetune.sh进行模型微调时,部分开发者遇到了一个奇怪的现象:训练过程中loss值始终为零,同时learning_rate也显示为零。从日志中可以观察到,虽然训练过程看似正常进行,但每次迭代的输出都显示"loss: 0.0"和"grad_norm: 0.0",并且伴随"tried to get lr value before scheduler/optimizer started stepping, returning lr=0"的提示信息。
问题分析
这种现象通常表明模型在训练过程中没有进行有效的参数更新。可能的原因包括:
-
学习率调度器初始化问题:日志中反复出现的"tried to get lr value before scheduler/optimizer started stepping"提示表明学习率调度器可能没有正确初始化。
-
梯度计算异常:grad_norm为零说明梯度没有被正确计算或传播,这会导致参数无法更新。
-
微调脚本修改不当:用户对官方提供的finetune.py脚本进行了自定义修改,可能无意中破坏了训练流程的关键部分。
-
数据预处理问题:虽然用户尝试了不同的数据集,但可能存在数据格式或预处理上的共性问题。
解决方案
经过实践验证,最有效的解决方法是:
-
恢复原始finetune.py脚本:将修改过的finetune.py还原为官方提供的原始版本。许多开发者发现,仅这一操作就能解决问题。
-
仅修改配置参数:后续的调整应集中在finetune.sh脚本和deepspeed_config.json配置文件中进行,包括:
- 学习率设置
- 批量大小
- 训练步数
- 优化器参数等
-
检查数据格式:确保输入数据符合Qwen3要求的格式规范,特别是jsonl文件的结构和内容。
经验总结
这个案例给我们的启示是:
-
在使用开源项目提供的工具时,应先确保基础脚本的完整性,再进行逐步的定制化修改。
-
当遇到训练异常时,采用"回归基础"的方法往往能快速定位问题 - 即先恢复到已知可工作的配置,再逐步添加修改。
-
深度学习训练过程中的零loss问题可能有多种原因,需要系统性地检查数据、模型架构和训练流程的各个环节。
Qwen3作为一个大型语言模型项目,其微调流程涉及复杂的参数配置和优化过程。开发者在进行自定义微调时,应当充分理解各配置参数的含义,并采用增量式的修改策略,以便快速定位和解决问题。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









