SRBench 开源项目指南
SRBench 是一个活跃的基准框架,专注于现代符号回归方法,并提供了一个统一平台来评估其性能,对比不同机器学习技术。本指南将带领您了解 SRBench 的核心结构,包括它的目录结构、启动文件以及配置文件。
1. 目录结构及介绍
SRBench 的目录组织旨在促进代码的可维护性和易理解性。以下是其主要目录及其大致功能:
-
./
根目录包含了基本的项目元数据,如README.md
,LICENSE
, 和关键脚本。 -
docs/
包含项目文档,帮助开发者快速理解项目架构和操作方式。 -
scripts/
这里存放了用于执行特定任务的脚本,比如运行实验或设置环境。 -
experiments/
存放实验相关的代码和数据,帮助进行系统性的方法测试和比较。 -
postprocessing/
处理实验结果,可能包含数据清洗、分析或可视化脚本。 -
results/
存储实验产生的结果,便于后续分析和比较。 -
contribute.sh
,install.sh
,local_ci.sh
等脚本,提供了贡献代码、安装依赖项和本地持续集成的基本流程。 -
__init__.py
,base_environment.yml
配置Python包初始化和基础环境需求。 -
LICENSE
文件说明了项目的授权协议(GPL-3.0)。 -
CONTRIBUTING.md
详细指导如何向项目贡献代码和改进。
2. 项目的启动文件介绍
在 SRBench 中,没有单一明确标记为“启动”文件的入口点。然而,项目运行通常涉及利用提供的脚本,例如 install.sh
来准备开发环境,之后可能会通过 scripts
目录下的脚本来启动具体的任务或实验。对于开发者来说,实际的“启动”过程可能是从配置好环境后调用某实验脚本开始。
3. 项目的配置文件介绍
-
base_environment.yml
: 这是一个 YAML 格式的文件,用于定义项目的基线环境需求,包括必要的Python包版本等,适用于使用conda这样的环境管理工具来创建一致的开发或运行环境。 -
.gitignore
: 规定了在Git版本控制中应忽略的文件类型或模式,确保不影响版本库纯净度和大小。 -
CONTRIBUTING.md
虽不直接作为配置文件,但对如何遵循项目规则和标准配置您的贡献具有指导意义。
此外,具体的实验或方法可能有它们自己的配置文件,这些通常位于对应实验的子目录内,或以 .yaml
、.json
形式存在,用于设定算法参数、数据路径等运行时细节,但这些未直接列出在原始引用信息中,实际操作时需查看相应实验文档或源码注释获得详情。
请注意,由于实际的配置文件名称和位置依赖于具体实现细节,上述指南基于一般开源项目的结构进行假设性描述。在深入使用SRBench前,详细阅读官方文档和示例是至关重要的。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









