SRBench 项目使用教程
2024-09-25 18:14:33作者:明树来
1. 项目介绍
SRBench 是一个用于符号回归(Symbolic Regression, SR)的活体基准框架。符号回归是一种机器学习方法,旨在发现描述数据集的数学表达式。SRBench 项目的目标是提供一个开放、可复现的基准测试,以评估和比较不同的符号回归方法。
该项目由 EpitasisLab 维护,包含多种符号回归方法和大量数据集,旨在解决符号回归领域中缺乏统一基准和跨社区交流的问题。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了 Python 和 Git。然后,克隆 SRBench 仓库并安装所需的依赖项。
git clone https://github.com/EpistasisLab/srbench.git
cd srbench
pip install -r requirements.txt
2.2 运行示例
SRBench 提供了一个示例脚本,用于演示如何使用符号回归方法进行基准测试。你可以通过以下命令运行示例:
python scripts/run_example.py
该脚本将使用默认配置运行符号回归方法,并输出结果。
3. 应用案例和最佳实践
3.1 应用案例
SRBench 可以应用于多个领域,如物理建模、生物信息学和金融分析。例如,在物理建模中,符号回归可以用于发现描述实验数据的数学模型。
3.2 最佳实践
- 数据预处理:在进行符号回归之前,确保数据已经过适当的预处理,如归一化和缺失值处理。
- 参数调优:不同的符号回归方法有不同的参数,建议通过交叉验证等方法进行参数调优。
- 结果分析:使用 SRBench 提供的结果分析工具,对符号回归模型的性能进行详细分析。
4. 典型生态项目
SRBench 作为一个基准框架,与其他符号回归和机器学习项目有良好的兼容性。以下是一些典型的生态项目:
- PMLB:PMLB(Penn Machine Learning Benchmarks)是一个包含多种机器学习数据集的仓库,SRBench 使用了其中的数据集进行基准测试。
- gplearn:gplearn 是一个基于遗传编程的符号回归库,SRBench 中包含了 gplearn 的基准测试。
- PySR:PySR 是一个用于符号回归的 Python 库,SRBench 计划将其纳入基准测试。
通过这些生态项目,SRBench 能够提供更全面和多样化的符号回归基准测试。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882