LLaMA-Factory项目中Qwen2-VL多模态训练中的Loss异常问题分析
2025-05-01 15:39:12作者:瞿蔚英Wynne
问题背景
在使用LLaMA-Factory项目对Qwen2-VL-7B-Instruct模型进行多模态训练时,开发者遇到了一个典型的技术问题:当采用两阶段训练策略(先训练纯文本数据,再训练多模态数据)时,模型在第二阶段会出现Loss变为NaN的情况。而单独训练多模态数据时则不会出现此问题。
问题现象
具体表现为:
- 第一阶段使用纯文本数据集A进行训练,训练过程正常
- 第二阶段加入包含图像的多模态数据集phone_web_0131_fix_merge_1500_wait_scroll_fix_hover后,Loss值变为NaN
- 单独训练多模态数据时训练过程正常
技术配置分析
训练配置中几个关键参数值得关注:
- 使用BF16混合精度训练
- 每设备训练批大小为1,梯度累积步数为4
- 使用DeepSpeed Zero-2优化策略
- 冻结了视觉塔(vision tower)和多模态投影器(multi-modal projector)
- 图像最大像素设置为1048576
可能原因分析
仓库协作者Kuangdd01提出了两种可能的技术原因:
-
BF16数值溢出:在混合精度训练中,BF16格式的动态范围较小,可能在梯度计算过程中出现数值溢出,特别是在梯度累积步骤较多的情况下。
-
DeepSpeed配置问题:DeepSpeed的bucket_size设置过大可能导致内存分配或通信问题,特别是在处理多模态数据时,数据量较大可能加剧这一问题。
解决方案建议
针对上述分析,协作者提出了两个解决方案:
-
调整批次大小和梯度累积:
- 将per_device_train_batch_size从1调整为2
- 将gradient_accumulation_steps从4减少到2
- 这样可以降低单步计算的梯度规模,减少数值溢出的风险
-
优化DeepSpeed配置:
- 降低allgather_bucket_size和reduce_bucket_size参数值
- 从默认的5e8降低到2e8
- 这样可以优化内存使用和通信效率,特别是在处理多模态数据时
技术原理深入
BF16数值稳定性问题
BF16(Brain Floating Point 16)格式虽然能节省显存并加速训练,但其仅7位尾数的设计使其在表示大梯度或小梯度时容易出现问题。在多模态训练中,由于同时处理文本和图像特征,梯度值范围可能更大,更容易出现数值不稳定。
多模态训练的特殊性
多模态模型训练时,数据流包含:
- 图像特征提取(通过冻结的视觉塔)
- 文本特征提取
- 多模态特征融合
这种复杂的数据处理流程对梯度计算和通信提出了更高要求,特别是在分布式训练环境下。
最佳实践建议
基于此案例,对于LLaMA-Factory项目中的多模态训练,建议:
- 采用渐进式训练策略时,注意学习率和批次大小的调整
- 监控训练初期的梯度范数,及时发现数值不稳定问题
- 对于多模态训练,可以尝试:
- 使用更保守的混合精度设置
- 采用更小的初始学习率
- 增加梯度裁剪
- 充分利用DeepSpeed的配置灵活性,根据硬件条件调整通信参数
总结
这个案例展示了大型多模态模型训练中的典型数值稳定性问题。通过合理配置训练参数和分布式训练策略,可以有效解决这类问题。对于LLaMA-Factory项目的使用者,理解这些底层原理有助于更好地利用该项目进行多模态模型的微调和训练。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869