OneTrainer项目中B-Lora/K-Lora训练的技术实现解析
2025-07-03 06:07:22作者:殷蕙予
背景与概念
在OneTrainer项目中,用户提出了关于B-Lora和K-Lora训练功能的需求。这两种技术本质上都是LoRA(Low-Rank Adaptation)训练的变体,旨在通过选择性训练模型中的特定模块来优化训练效率、减小模型体积并保持原始模型风格。
技术原理
传统LoRA训练会作用于模型的所有可训练层,而B-Lora/K-Lora的核心思想是只针对模型中的特定模块进行训练。这种选择性训练带来几个显著优势:
- 训练效率提升:减少训练参数数量,缩短训练时间
- 模型体积减小:生成的适配器文件更小
- 风格保持:避免对原始模型风格的过度影响
- 精准控制:可针对特定功能模块进行优化
OneTrainer中的实现方案
OneTrainer已经内置了实现B-Lora/K-Lora训练所需的核心功能。关键在于利用项目中的"层过滤器"(layer filter)功能,这允许用户精确选择需要训练的模型模块。
具体配置方法
-
UNet部分配置:
- 可针对输出块(output_blocks)中的特定层进行训练
- 通过正则表达式排除不需要训练的模块(如ff.net和proj相关层)
-
文本编码器部分配置:
- 可专注于CLIPAttention模块
- 其他文本编码器模块可保持不训练
技术对比
与传统全参数LoRA训练相比,B-Lora/K-Lora训练具有以下特点:
| 特性 | 传统LoRA | B-Lora/K-Lora |
|---|---|---|
| 训练范围 | 全模型 | 选择性模块 |
| 训练时间 | 较长 | 较短 |
| 模型体积 | 较大 | 较小 |
| 风格保持 | 一般 | 优秀 |
| 适用场景 | 全面微调 | 精准调整 |
实际应用建议
对于SDXL模型的微调,B-Lora/K-Lora方式特别适合以下场景:
- 角色添加:在不影响整体风格的情况下添加特定角色
- 风格微调:对模型输出进行精细的风格调整
- 概念植入:引入新概念而不破坏原有知识体系
总结
OneTrainer项目通过其灵活的层过滤功能,已经能够支持B-Lora/K-Lora式的训练方式。这种技术为模型微调提供了更高效、更精准的解决方案,特别适合需要保持原始模型风格同时进行特定优化的应用场景。用户无需额外编码,通过合理配置即可实现这种先进的训练方式。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355