OneTrainer项目中的DoRA训练技术解析
2025-07-03 03:06:18作者:彭桢灵Jeremy
背景介绍
在深度学习模型微调领域,低秩适应(Low-Rank Adaptation)技术近年来发展迅速。OneTrainer作为一款开源的AI训练工具,近期在其项目中实现了对DoRA(Decomposed Low-Rank Adaptation)训练的支持。这项技术相比传统的LoRA(Low-Rank Adaptation)有着显著优势,成为模型微调领域的新选择。
DoRA技术原理
DoRA是LoRA技术的一种改进版本,其核心思想是将权重矩阵分解为幅度(magnitude)和方向(direction)两个部分进行独立优化。这种分解方式使得模型能够更精细地控制参数更新,在保持低秩特性的同时获得更好的微调效果。
与传统的LoRA相比,DoRA具有以下优势:
- 训练效果更优:研究论文表明DoRA在多个任务上表现优于LoRA
- 参数效率更高:能够用更少的参数达到相同甚至更好的效果
- 兼容性强:可以无缝替换现有LoRA模块
OneTrainer的实现进展
OneTrainer项目通过commit #403成功集成了DoRA训练功能。这一实现基于社区其他项目(如kohya-ss)的相关工作,但经过优化适配到OneTrainer的架构中。值得注意的是,DoRA不仅训练过程得到支持,其推理环节也已在主流WebUI中实现兼容。
相关技术比较
在低秩适应技术家族中,除了DoRA和LoRA外,还包括多种变体:
- LoCon:在某些应用场景下能提供更优的质量表现
- LoKr:在保持质量的同时显著减小模型体积
- LyCORIS:另一种LoRA改进方案,通常生成更小的文件尺寸
这些技术各有特点,用户可以根据具体需求选择最适合的方案。不过从技术发展趋势来看,DoRA因其综合优势正逐渐成为首选。
应用建议
对于OneTrainer用户,以下是一些使用建议:
- 新项目优先考虑DoRA:作为LoRA的升级版,DoRA通常是更好的选择
- 注意兼容性:虽然主流环境已支持DoRA,但在部署时仍需确认推理端的兼容性
- 参数调优:DoRA的超参数设置可能与LoRA有所不同,需要适当调整
未来展望
随着DoRA等先进微调技术的成熟,OneTrainer这类工具将持续集成更多高效训练方案。我们可以期待未来会有更多创新性的低秩适应技术出现,进一步降低模型微调的门槛和成本。对于开发者社区而言,保持对新技术的快速集成能力将是提升工具竞争力的关键。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1