APIJSON项目中的分页信息兼容性处理方案
在APIJSON项目中,分页信息的处理方式在7.0.3版本中发生了变化,这给一些已经基于旧版本开发的应用带来了兼容性问题。本文将深入分析这一问题,并提供多种解决方案。
问题背景
APIJSON是一个基于JSON的API开发框架,在7.0.3版本之前,分页信息可以通过"info"字段获取。但在7.0.3版本中,分页信息被移到了"listInfo"字段中,并通过"$ref"引用方式返回。这种变化导致依赖旧版本"info"字段的前端应用无法正常获取分页信息。
技术分析
在7.0.3版本中,当使用"info@"参数请求分页信息时,返回的数据结构变为:
"info": {
"$ref": "$.listInfo"
}
这种引用方式虽然减少了数据冗余,但需要客户端支持JSON引用解析。而旧版本直接返回分页信息的方式则更加直观。
解决方案
方案一:客户端适配新版本
最简单的解决方案是让前端应用直接使用"listInfo"字段获取分页信息,不再依赖"info"字段。这是最推荐的长期解决方案。
方案二:禁用FastJSON的引用检测
在服务端可以禁用FastJSON的循环引用检测功能,这样就不会生成"$ref"引用:
@PostMapping(value = "get")
@Override
public String get(@RequestBody String request, HttpSession session) {
String result = super.get(request, session);
JSONObject jsonObject = JSON.parseObject(result);
return JSON.toJSONString(jsonObject, SerializerFeature.DisableCircularReferenceDetect);
}
这种方法简单有效,但需要注意它会影响所有JSON响应,可能会带来性能影响。
方案三:手动处理引用
可以手动处理JSON响应,将引用替换为实际值:
@PostMapping(value = "get")
@Override
public String get(@RequestBody String request, HttpSession session) {
String result = super.get(request, session);
JSONObject jsonObject = JSON.parseObject(result);
JSONObject info = jsonObject.getJSONObject("info");
if (info != null) {
jsonObject.put("info", new JSONObject(info));
}
return jsonObject.toJSONString();
}
这种方法更加精确,但需要为每个可能包含引用的字段添加处理逻辑。
最佳实践建议
-
对于新项目,建议直接使用"listInfo"字段获取分页信息,这是APIJSON未来的标准做法。
-
对于需要保持向后兼容的项目,推荐使用方案二,即禁用FastJSON的引用检测。这种方法改动最小,且能解决所有类似问题。
-
如果项目中有特殊需求,比如只需要处理特定字段的引用,可以考虑方案三,但要注意维护成本。
-
无论采用哪种方案,都建议在项目文档中明确说明分页信息的获取方式,避免后续开发人员混淆。
总结
APIJSON 7.0.3版本对分页信息的处理方式进行了优化,虽然带来了短期的兼容性问题,但也提供了更灵活的解决方案。开发者可以根据项目实际情况选择最适合的兼容方案,确保应用平稳过渡到新版本。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00