Google Gemini生成式AI Python库中的TypedDict使用问题解析
2025-07-03 07:48:21作者:柯茵沙
在使用Google Gemini生成式AI Python库时,开发者可能会遇到一个关于TypedDict使用的常见错误。本文将通过一个实际案例,深入分析问题原因并提供解决方案。
问题现象
当开发者尝试按照官方示例代码使用typing.TypedDict来定义JSON响应模式时,会遇到TypeError: pop expected at most 1 argument, got 2的错误。具体场景如下:
import typing_extensions as typing
class Recipe(typing.TypedDict):
recipe_name: str
model = genai.GenerativeModel("gemini-1.5-pro-latest")
result = model.generate_content(
"列出几个流行的饼干配方",
generation_config=genai.GenerationConfig(
response_mime_type="application/json",
response_schema=list([Recipe]) # 这里存在问题
),
)
问题分析
这个错误的核心在于Python类型注解的使用方式。在Python的类型系统中,list[Type]和list([Type])有着本质区别:
list[Recipe]是Python 3.9+引入的类型注解语法,表示一个由Recipe类型组成的列表list([Recipe])实际上是尝试创建一个Python列表对象,其中包含Recipe类本身作为元素
当代码尝试使用list([Recipe])作为类型注解时,内部处理机制会将其视为列表构造而非类型提示,从而导致pop方法调用异常。
解决方案
正确的写法应该是使用Python的类型注解语法:
response_schema=list[Recipe] # 正确的类型注解方式
深入理解
这个问题揭示了Python类型系统在实际应用中的几个重要方面:
-
类型注解与运行时构造的区别:Python的类型注解在运行时不会实际创建对象,而
list()这样的构造器调用会立即执行 -
Python版本兼容性:
list[Type]语法需要Python 3.9+,对于旧版本可以使用typing.List[Type] -
TypedDict的使用:
TypedDict非常适合用于定义JSON模式,它能提供良好的类型提示和文档支持
最佳实践
在使用Google Gemini API时,定义响应模式建议遵循以下模式:
from typing import List
import typing_extensions as typing
class Recipe(typing.TypedDict):
name: str
ingredients: List[str]
prep_time: int
response_schema = List[Recipe] # 清晰明确的类型注解
总结
正确处理Python类型注解对于使用Google Gemini API的响应模式定义至关重要。开发者应当熟悉Python的类型系统,特别是TypedDict和容器类型注解的正确用法,这样才能充分利用API提供的结构化响应功能,同时获得良好的代码提示和类型检查支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137