Spark Ranger 安全插件使用教程
2024-08-07 18:11:16作者:薛曦旖Francesca
项目介绍
Spark Ranger 是一个开源的安全插件,用于在 Apache Spark SQL 中实现细粒度的权限控制。通过集成 Apache Ranger,Spark Ranger 提供了表级、列级授权、行级过滤和数据脱敏等功能。该项目由网易开发并维护,旨在增强 Spark 在大数据处理环境中的安全性。
项目快速启动
环境准备
- Apache Spark 2.3 或更高版本
- Apache Ranger 1.0 或更高版本
- Java 8 或更高版本
安装步骤
-
克隆项目仓库
git clone https://github.com/NetEase/spark-ranger.git cd spark-ranger -
构建项目
mvn clean package -Pspark-2.3 -Pranger-1.0 -DskipTests -
配置 Spark Ranger 插件
- 将生成的
spark-ranger-<version>.jar文件复制到$SPARK_HOME/jars目录下。 - 在
$SPARK_HOME/conf目录下创建ranger-spark-security.xml和ranger-spark-audit.xml文件,并添加相应的配置。
- 将生成的
-
启动 Spark Thrift Server
$SPARK_HOME/sbin/start-thriftserver.sh
配置示例
ranger-spark-security.xml
<configuration>
<property>
<name>ranger.plugin.spark.policy.rest.url</name>
<value>http://ranger-admin:6080</value>
</property>
<property>
<name>ranger.plugin.spark.service.name</name>
<value>spark_service</value>
</property>
</configuration>
ranger-spark-audit.xml
<configuration>
<property>
<name>xasecure.audit.is.enabled</name>
<value>true</value>
</property>
</configuration>
应用案例和最佳实践
应用案例
场景描述:在一个大型电商平台上,需要对用户的购买记录进行分析,但必须确保只有授权的分析师可以访问敏感数据。
解决方案:使用 Spark Ranger 插件,配置行级过滤和数据脱敏策略,确保分析师只能访问非敏感数据,同时对敏感数据进行脱敏处理。
最佳实践
- 权限最小化:只授予用户或角色必要的权限,避免过度授权。
- 定期审计:定期检查和审计权限配置,确保安全策略的有效性。
- 监控和告警:配置监控和告警机制,及时发现和响应异常访问行为。
典型生态项目
- Apache Hadoop:作为大数据处理的基础框架,与 Spark 和 Ranger 共同构建完整的数据处理和安全生态。
- Apache Hive:与 Spark 结合使用,提供数据仓库解决方案,并通过 Ranger 进行权限管理。
- Apache Kafka:作为消息队列系统,与 Spark 集成进行实时数据处理,并通过 Ranger 进行访问控制。
通过以上模块的介绍和实践,您可以快速上手并有效利用 Spark Ranger 插件来增强您的 Spark 应用的安全性。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
267
2.54 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
Ascend Extension for PyTorch
Python
98
126
暂无简介
Dart
557
124
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
54
11
用于管理和运行HarmonyOS Issue解决方案Demo集锦。
ArkTS
13
23
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
604
仓颉编译器源码及 cjdb 调试工具。
C++
117
93
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1