MyBatis-Plus实现高效批量插入的深度解析与实践
2025-05-14 07:25:05作者:贡沫苏Truman
引言
在数据库操作中,批量插入是提升性能的重要手段。MyBatis-Plus作为MyBatis的增强工具,提供了saveBatch方法来实现批量操作。然而,默认实现存在一些局限性,本文将深入探讨如何通过自定义扩展实现真正高效的批量插入。
默认批量插入的问题分析
MyBatis-Plus默认的saveBatch方法实际上是使用JDBC的批处理模式,本质上还是执行多条INSERT语句。这种方式虽然比单条插入效率高,但与MySQL支持的INSERT INTO ... VALUES (...), (...), ...这种真正的批量插入语句相比,性能仍有差距。
主要问题体现在:
- 默认实现无法利用MySQL的多值插入语法
 - 对于有默认值的字段处理不够灵活
 - 无法动态根据实体属性值决定插入列
 
解决方案设计思路
方案一:SqlInjector+Interceptor组合方案
通过自定义SqlInjector添加新的批量插入方法,再配合Interceptor实现SQL重写:
- 自定义SqlInjector:继承DefaultSqlInjector,添加新的批量插入方法
 - Interceptor实现:拦截执行过程,分析实体属性值动态生成SQL
 - 动态列处理:根据实体实际赋值的属性决定插入列
 
关键点在于通过实体属性值反向推导出需要插入的列,而不是使用所有表字段。
方案二:动态SQL分组方案
另一种实现思路是通过分析实体属性值的null情况,对批量数据进行分组:
- 属性分析:检查每个实体的各字段值是否为null或空
 - 分组处理:将具有相同null/非null字段模式的实体分为一组
 - 动态SQL生成:为每组生成对应的INSERT语句
 
这种方式可以更精确地控制插入列,但实现复杂度较高。
技术实现细节
自定义SqlInjector实现
创建自定义的MysqlInsertBatchInjector:
public class MysqlInsertBatchInjector extends DefaultSqlInjector {
    @Override
    public List<AbstractMethod> getMethodList(Class<?> mapperClass) {
        List<AbstractMethod> methodList = super.getMethodList(mapperClass);
        methodList.add(new MysqlInsertBatch());
        return methodList;
    }
}
批量插入方法定义
定义新的批量插入方法:
public class MysqlInsertBatch extends AbstractMethod {
    @Override
    public MappedStatement injectMappedStatement(...) {
        // 创建MappedStatement但不生成完整SQL
        // 实际SQL由拦截器生成
    }
}
拦截器实现
关键拦截器实现逻辑:
public class MysqlInsertBatchInterceptor implements Interceptor {
    @Override
    public Object intercept(Invocation invocation) throws Throwable {
        // 1. 获取参数和实体列表
        // 2. 分析第一个实体的非空属性
        // 3. 构建INSERT INTO table (col1,col2) VALUES (?,?),(?,?)形式SQL
        // 4. 重写SQL并执行
    }
}
性能优化建议
- 批量大小控制:合理设置每批次插入的数据量,建议500-1000条/批
 - 事务管理:确保批量操作在同一个事务中执行
 - 连接池配置:适当增大连接池大小应对批量操作
 - 索引优化:临时禁用非必要索引提升插入速度
 
注意事项
- 字段一致性:同一批次的所有实体必须具有相同的非空字段
 - 默认值处理:数据库默认值字段可以不设置
 - 主键生成:注意自增ID的处理方式
 - 异常处理:做好批量失败的回滚和重试机制
 
总结
通过自定义扩展MyBatis-Plus的批量插入功能,可以显著提升大数据量插入的性能。本文介绍的两种方案各有优缺点,开发者可以根据实际需求选择适合的方案。对于需要极致性能的场景,推荐使用SqlInjector+Interceptor的组合方案;对于字段变化较多的场景,则可以考虑动态SQL分组方案。
在实际应用中,还需要结合具体的业务场景和数据特点进行调整,才能达到最佳的批量插入效果。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445