MyBatis-Plus批量插入操作与二级缓存刷新机制解析
问题背景
在使用MyBatis-Plus进行数据库操作时,开发者发现一个关于二级缓存刷新的重要现象:当使用insert(Collection<T> entityList)方法进行批量插入时,二级缓存未能按预期刷新,而使用单条记录的insert(T entity)方法则可以正常刷新缓存。
现象重现
通过一个简单的示例可以清晰地重现这个问题:
- 首先查询数据库中的所有记录并打印数量
- 执行批量插入操作(使用
insert(Collection<T> entityList)方法) - 再次查询数据库记录
- 发现第二次查询结果没有包含新插入的记录
而如果将批量插入改为单条插入(使用insert(T entity)方法),则第二次查询能够正确获取到新插入的记录。
技术原理分析
MyBatis二级缓存机制
MyBatis的二级缓存是Mapper级别的缓存,默认情况下是关闭的。当开启后,多个SqlSession操作同一个Mapper的sql语句时,可以共享二级缓存。
二级缓存的更新机制依赖于MyBatis的缓存刷新策略,通常在执行插入、更新、删除操作时会自动刷新相关缓存。
MyBatis-Plus批量操作实现
MyBatis-Plus的批量插入操作insert(Collection<T> entityList)底层是通过动态SQL实现的,它会生成一个包含多条INSERT语句的批量操作。与单条插入操作相比,批量操作在SQL执行方式上有显著差异。
问题根源
经过分析,问题可能出在以下几个方面:
- 缓存刷新触发机制:MyBatis-Plus的批量插入实现可能没有正确触发MyBatis的缓存刷新机制
- 事务边界处理:批量操作的事务处理可能与单条操作不同,影响了缓存的刷新时机
- SQL执行方式:批量SQL的执行方式可能导致缓存识别不到数据变更
解决方案探讨
针对这个问题,开发者可以考虑以下几种解决方案:
-
显式清除缓存:在批量插入操作后,手动清除相关缓存
entityDAO.clearCache(); -
使用单条插入循环:如果不介意性能影响,可以使用循环执行单条插入
-
自定义批量插入方法:实现一个自定义的批量插入方法,确保正确刷新缓存
-
检查MyBatis配置:确认二级缓存配置是否正确,特别是
flushCache相关设置
最佳实践建议
基于MyBatis-Plus的使用经验,建议开发者在涉及缓存的场景下:
- 对于关键业务操作,考虑显式管理缓存状态
- 在性能允许的情况下,优先使用已验证可靠的单条操作方法
- 在必须使用批量操作的场景下,增加缓存状态检查逻辑
- 合理配置事务隔离级别和缓存策略
总结
MyBatis-Plus作为MyBatis的增强工具,虽然提供了许多便利功能,但在某些特定场景下仍可能出现与原生MyBatis行为的差异。理解底层原理并掌握问题排查方法,对于构建健壮的数据访问层至关重要。本次分析的批量插入缓存刷新问题,正是一个典型的需要开发者深入理解框架行为才能有效解决的案例。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00