MyBatis-Plus批量插入操作与二级缓存刷新机制解析
问题背景
在使用MyBatis-Plus进行数据库操作时,开发者发现一个关于二级缓存刷新的重要现象:当使用insert(Collection<T> entityList)方法进行批量插入时,二级缓存未能按预期刷新,而使用单条记录的insert(T entity)方法则可以正常刷新缓存。
现象重现
通过一个简单的示例可以清晰地重现这个问题:
- 首先查询数据库中的所有记录并打印数量
- 执行批量插入操作(使用
insert(Collection<T> entityList)方法) - 再次查询数据库记录
- 发现第二次查询结果没有包含新插入的记录
而如果将批量插入改为单条插入(使用insert(T entity)方法),则第二次查询能够正确获取到新插入的记录。
技术原理分析
MyBatis二级缓存机制
MyBatis的二级缓存是Mapper级别的缓存,默认情况下是关闭的。当开启后,多个SqlSession操作同一个Mapper的sql语句时,可以共享二级缓存。
二级缓存的更新机制依赖于MyBatis的缓存刷新策略,通常在执行插入、更新、删除操作时会自动刷新相关缓存。
MyBatis-Plus批量操作实现
MyBatis-Plus的批量插入操作insert(Collection<T> entityList)底层是通过动态SQL实现的,它会生成一个包含多条INSERT语句的批量操作。与单条插入操作相比,批量操作在SQL执行方式上有显著差异。
问题根源
经过分析,问题可能出在以下几个方面:
- 缓存刷新触发机制:MyBatis-Plus的批量插入实现可能没有正确触发MyBatis的缓存刷新机制
- 事务边界处理:批量操作的事务处理可能与单条操作不同,影响了缓存的刷新时机
- SQL执行方式:批量SQL的执行方式可能导致缓存识别不到数据变更
解决方案探讨
针对这个问题,开发者可以考虑以下几种解决方案:
-
显式清除缓存:在批量插入操作后,手动清除相关缓存
entityDAO.clearCache(); -
使用单条插入循环:如果不介意性能影响,可以使用循环执行单条插入
-
自定义批量插入方法:实现一个自定义的批量插入方法,确保正确刷新缓存
-
检查MyBatis配置:确认二级缓存配置是否正确,特别是
flushCache相关设置
最佳实践建议
基于MyBatis-Plus的使用经验,建议开发者在涉及缓存的场景下:
- 对于关键业务操作,考虑显式管理缓存状态
- 在性能允许的情况下,优先使用已验证可靠的单条操作方法
- 在必须使用批量操作的场景下,增加缓存状态检查逻辑
- 合理配置事务隔离级别和缓存策略
总结
MyBatis-Plus作为MyBatis的增强工具,虽然提供了许多便利功能,但在某些特定场景下仍可能出现与原生MyBatis行为的差异。理解底层原理并掌握问题排查方法,对于构建健壮的数据访问层至关重要。本次分析的批量插入缓存刷新问题,正是一个典型的需要开发者深入理解框架行为才能有效解决的案例。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00