首页
/ LLaMA-Factory项目中Gemma-3模型训练损失异常问题分析

LLaMA-Factory项目中Gemma-3模型训练损失异常问题分析

2025-05-01 10:19:54作者:咎竹峻Karen

问题背景

在LLaMA-Factory项目的最新版本0.9.3.dev0中,用户在使用DeepSpeed Zero-3策略训练Gemma-3模型时,观察到了训练损失下降异常缓慢的现象。与同项目中的Llama3模型相比,Gemma-3的初始损失值明显偏高,且收敛速度较慢。

现象描述

多位用户报告了类似现象:

  1. 使用相同数据集训练时,Llama3模型的损失值通常从5左右开始,最终收敛到0.5附近
  2. 而Gemma-3模型的损失值初始高达70,经过训练后仅能降至10左右
  3. 虽然损失值仍在下降,但下降曲线明显异常,收敛速度远低于预期

技术分析

这种现象可能由以下几个技术因素导致:

  1. 损失函数计算差异:Gemma-3作为Google开发的新型大语言模型,其损失计算方式可能与Meta的Llama系列存在差异。特别是早期版本可能包含了多模态损失计算,导致数值偏高。

  2. 模型架构特性:Gemma系列模型采用了不同的注意力机制和归一化方式,这些架构差异会影响训练初期的梯度传播效率。

  3. 优化器适配问题:DeepSpeed Zero-3策略在参数分区和梯度聚合上的特殊处理,可能与Gemma-3的某些层结构存在兼容性问题。

  4. 学习率设置不当:针对Gemma-3的特性,可能需要调整默认学习率才能获得理想的收敛速度。

解决方案验证

用户通过以下方式验证了解决方案的有效性:

  1. 升级到最新版本:更新LLaMA-Factory项目后,Gemma-3的训练损失表现恢复正常,3个epoch后能收敛到1左右。

  2. 损失函数优化:项目团队可能移除了导致损失值异常高的多模态损失计算部分。

  3. 性能评估:尽管收敛速度仍略慢于Llama3,但最终模型性能没有明显下降,验证了训练过程的有效性。

最佳实践建议

基于此次经验,对于在LLaMA-Factory项目中使用Gemma系列模型的用户,建议:

  1. 始终使用项目最新版本,确保获得最新的模型适配优化
  2. 对Gemma模型的训练过程保持耐心,其收敛曲线可能与Llama系列不同
  3. 监控实际推理性能而不仅仅是训练损失值
  4. 必要时可尝试调整学习率等超参数以获得更好的训练效果

总结

大语言模型训练过程中的损失值表现需要结合具体模型架构和训练框架来分析。LLaMA-Factory项目团队通过持续更新,已经解决了Gemma-3模型训练损失异常的问题,为用户提供了更稳定的训练体验。这也提醒我们在使用新模型时,要关注框架兼容性和版本更新,以获得最佳训练效果。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133