首页
/ LLaMA-Factory项目中梯度累积步数对损失值的影响分析

LLaMA-Factory项目中梯度累积步数对损失值的影响分析

2025-05-01 11:25:20作者:钟日瑜

问题背景

在深度学习模型训练过程中,梯度累积(Gradient Accumulation)是一种常见的技术手段,它允许我们在较小的批量大小下模拟较大批量训练的效果。具体实现方式是通过多次前向传播累积梯度,然后再执行一次反向传播更新参数。然而,在LLaMA-Factory项目的最新版本中,用户报告了一个值得关注的现象:当使用Gemma3模型进行预训练时,损失值会随着梯度累积步数的增加而上升。

技术原理分析

在标准的训练流程中,损失值通常应该随着梯度累积步数的增加保持稳定或呈现下降趋势。出现损失值异常上升的情况,往往与梯度计算或损失函数处理方式有关。经过技术分析,发现这个问题可能与以下因素相关:

  1. 损失函数计算方式:在梯度累积过程中,如果损失值没有正确地进行平均处理,可能会导致累积步数增加时损失值异常放大。

  2. 模型参数更新频率:梯度累积改变了参数更新的实际频率,这可能影响优化器的行为和学习率的效果。

  3. 特殊模型架构:Gemma3作为较新的模型架构,可能对梯度累积的处理有特殊要求。

解决方案探索

LLaMA-Factory项目中已经针对类似问题进行了修复。在大多数训练工作流中,开发者通过显式设置model_accepts_loss_kwargs = False来确保损失计算的正确性。然而,这一设置在预训练工作流中尚未应用。

技术验证表明,将相同的修复方案应用于预训练工作流同样有效。这主要是因为:

  1. 统一损失计算逻辑:强制关闭模型的损失参数接受能力,可以确保梯度累积过程中损失计算的统一性。

  2. 避免框架默认行为干扰:某些模型架构可能会对损失计算做出特殊处理,显式设置可以规避这些潜在问题。

实践建议

对于使用LLaMA-Factory进行模型训练的用户,特别是进行预训练任务时,建议:

  1. 检查梯度累积步数与损失值的关系曲线,确认是否存在异常放大现象。

  2. 在预训练配置中显式设置model_accepts_loss_kwargs = False,确保与其它训练工作流的一致性。

  3. 对于Gemma等较新模型架构,建议在正式训练前进行小规模验证实验,确认梯度累积效果符合预期。

总结

梯度累积是深度学习训练中的重要技术,正确处理其对损失计算的影响对于训练稳定性至关重要。LLaMA-Factory项目通过统一设置model_accepts_loss_kwargs参数,有效解决了梯度累积步数增加导致损失异常的问题。这一经验也提醒我们,在使用新模型架构或特殊训练流程时,需要特别关注基础训练组件的兼容性和一致性。

登录后查看全文

项目优选

收起
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
281
567
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
465
378
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
14
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
358
37
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
56
128
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
104
187
CangjieMagicCangjieMagic
基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
571
40
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
350
252
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
93
246
ruoyi-airuoyi-ai
RuoYi AI 是一个全栈式 AI 开发平台,旨在帮助开发者快速构建和部署个性化的 AI 应用。
Java
100
28