LLaMA-Factory项目中梯度累积步数对损失值的影响分析
问题背景
在深度学习模型训练过程中,梯度累积(Gradient Accumulation)是一种常见的技术手段,它允许我们在较小的批量大小下模拟较大批量训练的效果。具体实现方式是通过多次前向传播累积梯度,然后再执行一次反向传播更新参数。然而,在LLaMA-Factory项目的最新版本中,用户报告了一个值得关注的现象:当使用Gemma3模型进行预训练时,损失值会随着梯度累积步数的增加而上升。
技术原理分析
在标准的训练流程中,损失值通常应该随着梯度累积步数的增加保持稳定或呈现下降趋势。出现损失值异常上升的情况,往往与梯度计算或损失函数处理方式有关。经过技术分析,发现这个问题可能与以下因素相关:
-
损失函数计算方式:在梯度累积过程中,如果损失值没有正确地进行平均处理,可能会导致累积步数增加时损失值异常放大。
-
模型参数更新频率:梯度累积改变了参数更新的实际频率,这可能影响优化器的行为和学习率的效果。
-
特殊模型架构:Gemma3作为较新的模型架构,可能对梯度累积的处理有特殊要求。
解决方案探索
LLaMA-Factory项目中已经针对类似问题进行了修复。在大多数训练工作流中,开发者通过显式设置model_accepts_loss_kwargs = False来确保损失计算的正确性。然而,这一设置在预训练工作流中尚未应用。
技术验证表明,将相同的修复方案应用于预训练工作流同样有效。这主要是因为:
-
统一损失计算逻辑:强制关闭模型的损失参数接受能力,可以确保梯度累积过程中损失计算的统一性。
-
避免框架默认行为干扰:某些模型架构可能会对损失计算做出特殊处理,显式设置可以规避这些潜在问题。
实践建议
对于使用LLaMA-Factory进行模型训练的用户,特别是进行预训练任务时,建议:
-
检查梯度累积步数与损失值的关系曲线,确认是否存在异常放大现象。
-
在预训练配置中显式设置
model_accepts_loss_kwargs = False,确保与其它训练工作流的一致性。 -
对于Gemma等较新模型架构,建议在正式训练前进行小规模验证实验,确认梯度累积效果符合预期。
总结
梯度累积是深度学习训练中的重要技术,正确处理其对损失计算的影响对于训练稳定性至关重要。LLaMA-Factory项目通过统一设置model_accepts_loss_kwargs参数,有效解决了梯度累积步数增加导致损失异常的问题。这一经验也提醒我们,在使用新模型架构或特殊训练流程时,需要特别关注基础训练组件的兼容性和一致性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00