首页
/ LLaMA-Factory项目中梯度累积步数对损失值的影响分析

LLaMA-Factory项目中梯度累积步数对损失值的影响分析

2025-05-01 21:37:56作者:钟日瑜

问题背景

在深度学习模型训练过程中,梯度累积(Gradient Accumulation)是一种常见的技术手段,它允许我们在较小的批量大小下模拟较大批量训练的效果。具体实现方式是通过多次前向传播累积梯度,然后再执行一次反向传播更新参数。然而,在LLaMA-Factory项目的最新版本中,用户报告了一个值得关注的现象:当使用Gemma3模型进行预训练时,损失值会随着梯度累积步数的增加而上升。

技术原理分析

在标准的训练流程中,损失值通常应该随着梯度累积步数的增加保持稳定或呈现下降趋势。出现损失值异常上升的情况,往往与梯度计算或损失函数处理方式有关。经过技术分析,发现这个问题可能与以下因素相关:

  1. 损失函数计算方式:在梯度累积过程中,如果损失值没有正确地进行平均处理,可能会导致累积步数增加时损失值异常放大。

  2. 模型参数更新频率:梯度累积改变了参数更新的实际频率,这可能影响优化器的行为和学习率的效果。

  3. 特殊模型架构:Gemma3作为较新的模型架构,可能对梯度累积的处理有特殊要求。

解决方案探索

LLaMA-Factory项目中已经针对类似问题进行了修复。在大多数训练工作流中,开发者通过显式设置model_accepts_loss_kwargs = False来确保损失计算的正确性。然而,这一设置在预训练工作流中尚未应用。

技术验证表明,将相同的修复方案应用于预训练工作流同样有效。这主要是因为:

  1. 统一损失计算逻辑:强制关闭模型的损失参数接受能力,可以确保梯度累积过程中损失计算的统一性。

  2. 避免框架默认行为干扰:某些模型架构可能会对损失计算做出特殊处理,显式设置可以规避这些潜在问题。

实践建议

对于使用LLaMA-Factory进行模型训练的用户,特别是进行预训练任务时,建议:

  1. 检查梯度累积步数与损失值的关系曲线,确认是否存在异常放大现象。

  2. 在预训练配置中显式设置model_accepts_loss_kwargs = False,确保与其它训练工作流的一致性。

  3. 对于Gemma等较新模型架构,建议在正式训练前进行小规模验证实验,确认梯度累积效果符合预期。

总结

梯度累积是深度学习训练中的重要技术,正确处理其对损失计算的影响对于训练稳定性至关重要。LLaMA-Factory项目通过统一设置model_accepts_loss_kwargs参数,有效解决了梯度累积步数增加导致损失异常的问题。这一经验也提醒我们,在使用新模型架构或特殊训练流程时,需要特别关注基础训练组件的兼容性和一致性。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511