VMamba项目中Swin Transformer模型FLOPs计算差异分析
2025-06-30 09:57:24作者:翟萌耘Ralph
背景介绍
在深度学习模型评估中,FLOPs(浮点运算次数)是一个重要的性能指标,它直接反映了模型的计算复杂度。近期在VMamba项目的研究过程中,发现使用不同工具计算Swin-T模型FLOPs时存在显著差异,这引发了我们对模型计算复杂度评估方法的深入思考。
问题现象
研究人员在使用mmsegmentation框架的get_flops.py脚本(基于PyTorch 1.12)计算Swin-T模型的FLOPs时,发现结果与VMamba论文附录表9中公布的数据存在较大差异。这种差异不仅体现在FLOPs数值上,参数数量也有所不同。
差异原因分析
经过深入调查,发现造成这种差异的主要原因有以下两点:
-
窗口大小缩放机制:
- 在原始Swin Transformer的实现中,窗口大小会随着输入分辨率的变化而自动缩放,具体规则是分辨率除以32
- 而在mmsegmentation等框架中,增大图像尺寸并不会自动导致窗口大小的缩放,这导致了计算方式的根本差异
-
注意力机制实现差异:
- fvcore工具库目前不支持PyTorch的
torch.nn.functional.scaled_dot_product_attention函数 - 当使用这个函数计算FLOPs时,需要替换为原始的点积注意力实现方式,否则会导致计算结果不准确
- fvcore工具库目前不支持PyTorch的
解决方案
VMamba项目提供了专门的工具来解决这些问题:
-
窗口大小适配:
- 项目中的分析工具已经考虑了窗口大小随分辨率变化的特性
- 通过特定的配置确保窗口大小能够正确缩放
-
注意力计算优化:
- 实现了自定义的注意力计算模块
- 确保FLOPs计算能够准确反映实际运算量
实践建议
对于研究人员和工程师,在进行模型FLOPs计算时应注意:
- 明确计算工具是否考虑了模型特定的设计细节
- 对于包含特殊操作(如可变窗口注意力)的模型,建议使用官方提供的计算工具
- 比较不同模型的FLOPs时,确保计算方法和前提条件一致
总结
模型复杂度评估是深度学习研究中的重要环节,但往往受到实现细节和计算工具的影响。VMamba项目通过提供专门的分析工具,确保了模型FLOPs计算的准确性,为后续的性能比较和模型选择提供了可靠依据。这一案例也提醒我们,在进行模型评估时需要关注实现细节,避免因工具差异导致错误的结论。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178