VMamba项目中MambaInnerFn算子的FLOPs计算分析
2025-06-30 15:40:21作者:董宙帆
概述
在深度学习模型分析中,准确计算算子的浮点运算次数(FLOPs)对于模型性能评估和优化至关重要。本文针对VMamba项目中的MambaInnerFn算子进行深入分析,探讨其FLOPs计算方法的实现细节和潜在问题。
MambaInnerFn算子的功能
MambaInnerFn是VMamba项目中实现的一个关键算子,它主要完成以下几个计算步骤:
- 对输入数据进行1D卷积操作
- 执行线性投影变换
- 计算delta参数
- 进行选择性扫描(selective scan)操作
- 最终输出投影
FLOPs计算实现分析
VMamba项目提供了针对该算子的FLOPs计算工具,主要实现逻辑如下:
输入参数检查
首先对输入张量的形状进行验证,确保符合预期:
- 输入xz的形状应为(Batch, 2*Dim, L)
- 卷积权重conv1d_weight的形状为(Dim, 1, CWidth)
- 投影权重x_proj_weight的形状为(R + H + H, Dim)
- 状态矩阵A的形状为(Dim, H)
各阶段FLOPs计算
-
1D卷积阶段:
- FLOPs计算公式:Batch * (Dim * L) * CWidth
- 这部分对应causal_conv1d_cuda.causal_conv1d_fwd操作
-
线性投影阶段:
- FLOPs计算公式:Batch * (Dim * L) * (R + H + H)
- 对应F.linear操作,将卷积输出重排后投影
-
Delta计算阶段:
- FLOPs计算公式:Batch * (Dim * R) * L
- 使用delta_proj_weight对部分投影结果进行矩阵乘法
-
选择性扫描阶段:
- 核心FLOPs计算公式:9 * Batch * L * Dim * H
- 如果包含D项,额外增加Batch * Dim * L
- 如果包含Z项,额外增加Batch * Dim * L
-
输出投影阶段:
- FLOPs计算公式:Batch * Dim * L * out_proj_weight.shape[0]
- 对最终输出进行线性变换
实现中的关键修正
在原始实现中发现了一个潜在问题,在输出投影阶段的权重形状检查中:
原始代码:
assert out_proj_weight[1] == Dim
flops += Batch * Dim * L * out_proj_weight[0]
修正后代码:
out_weight_shape = out_proj_weight.type().sizes()
assert out_weight_shape[1] == Dim
flops += Batch * Dim * L * out_weight_shape[0]
修正点在于需要先获取权重张量的形状元组,再访问其中的维度值,而不是直接对张量对象进行索引访问。
实际应用注意事项
-
在VMamba和Vim等模型中,MambaInnerFnNoOutProj_jit被用于计算FLOPs,它与MambaInnerFn_jit的主要区别在于不包含最后的输出投影层。
-
计算选择性扫描阶段的FLOPs时,参考了相关项目的经验值,采用9倍的基本运算量作为估算基准。
-
实际应用中需要注意是否包含D项和Z项,这会直接影响最终的FLOPs计算结果。
总结
准确计算Mamba类模型中复杂算子的FLOPs对于模型性能分析和优化具有重要意义。通过对VMamba项目中MambaInnerFn算子的分析,我们不仅理解了其计算流程,也掌握了正确的FLOPs计算方法。在实际应用中,需要注意算子实现的细节差异,确保计算结果的准确性。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869