VMamba项目中MambaInnerFn算子的FLOPs计算分析
2025-06-30 19:16:41作者:董宙帆
概述
在深度学习模型分析中,准确计算算子的浮点运算次数(FLOPs)对于模型性能评估和优化至关重要。本文针对VMamba项目中的MambaInnerFn算子进行深入分析,探讨其FLOPs计算方法的实现细节和潜在问题。
MambaInnerFn算子的功能
MambaInnerFn是VMamba项目中实现的一个关键算子,它主要完成以下几个计算步骤:
- 对输入数据进行1D卷积操作
- 执行线性投影变换
- 计算delta参数
- 进行选择性扫描(selective scan)操作
- 最终输出投影
FLOPs计算实现分析
VMamba项目提供了针对该算子的FLOPs计算工具,主要实现逻辑如下:
输入参数检查
首先对输入张量的形状进行验证,确保符合预期:
- 输入xz的形状应为(Batch, 2*Dim, L)
- 卷积权重conv1d_weight的形状为(Dim, 1, CWidth)
- 投影权重x_proj_weight的形状为(R + H + H, Dim)
- 状态矩阵A的形状为(Dim, H)
各阶段FLOPs计算
-
1D卷积阶段:
- FLOPs计算公式:Batch * (Dim * L) * CWidth
- 这部分对应causal_conv1d_cuda.causal_conv1d_fwd操作
-
线性投影阶段:
- FLOPs计算公式:Batch * (Dim * L) * (R + H + H)
- 对应F.linear操作,将卷积输出重排后投影
-
Delta计算阶段:
- FLOPs计算公式:Batch * (Dim * R) * L
- 使用delta_proj_weight对部分投影结果进行矩阵乘法
-
选择性扫描阶段:
- 核心FLOPs计算公式:9 * Batch * L * Dim * H
- 如果包含D项,额外增加Batch * Dim * L
- 如果包含Z项,额外增加Batch * Dim * L
-
输出投影阶段:
- FLOPs计算公式:Batch * Dim * L * out_proj_weight.shape[0]
- 对最终输出进行线性变换
实现中的关键修正
在原始实现中发现了一个潜在问题,在输出投影阶段的权重形状检查中:
原始代码:
assert out_proj_weight[1] == Dim
flops += Batch * Dim * L * out_proj_weight[0]
修正后代码:
out_weight_shape = out_proj_weight.type().sizes()
assert out_weight_shape[1] == Dim
flops += Batch * Dim * L * out_weight_shape[0]
修正点在于需要先获取权重张量的形状元组,再访问其中的维度值,而不是直接对张量对象进行索引访问。
实际应用注意事项
-
在VMamba和Vim等模型中,MambaInnerFnNoOutProj_jit被用于计算FLOPs,它与MambaInnerFn_jit的主要区别在于不包含最后的输出投影层。
-
计算选择性扫描阶段的FLOPs时,参考了相关项目的经验值,采用9倍的基本运算量作为估算基准。
-
实际应用中需要注意是否包含D项和Z项,这会直接影响最终的FLOPs计算结果。
总结
准确计算Mamba类模型中复杂算子的FLOPs对于模型性能分析和优化具有重要意义。通过对VMamba项目中MambaInnerFn算子的分析,我们不仅理解了其计算流程,也掌握了正确的FLOPs计算方法。在实际应用中,需要注意算子实现的细节差异,确保计算结果的准确性。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
144
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
73
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K