推荐开源项目:无需trimap的精细抠图——Mask Guided Matting via Progressive Refinement Network
在这个图像处理与计算机视觉领域日新月异的时代,我们迎来了一个创新性的开源项目:Mask Guided Matting(MG Matting),它由约翰斯·霍普金斯大学和Adobe Research的研究团队在CVPR 2021上提出。这个项目引入了一种全新的方法,能够实现无需trimap的精细化抠图,并且能预测前景颜色,最重要的是,它只需要已广泛使用的合成数据集Composition-1k进行训练。
1、项目介绍
MG Matting致力于解决传统抠图方法中对trimap依赖的问题,取而代之的是利用粗糙掩模作为引导输入来预测高细节度的Alpha蒙版。此外,项目还发现并解决了Composition-1k中的前景颜色标注不准确问题,通过预测前景颜色提升抠图质量。项目提供了大量可视化比较示例,包括与其他抠图方法的对比,甚至还能处理视频抠图。
2、项目技术分析
该技术基于Progressive Refinement Network,可以接受由自动分割或显著性模型产生的粗略掩模,进而估计出精确的Alpha蒙版。网络结构设计巧妙,逐步细化图像细节,降低了对精细trimap的依赖。同时,通过预测前景颜色,提高了对合成数据集中错误颜色注释的鲁棒性。
3、应用场景
MG Matting广泛应用于各种图像与视频后期制作中,如特效合成、虚拟现实、视频剪辑等。由于其出色的背景分离效果,它也能在人像美容、商品展示等领域发挥重要作用。此外,对于没有大量手动标注资源的环境,该项目提供了一个高效的解决方案。
4、项目特点
- 无trimap依赖:仅需粗略的掩模输入,就能产生高质量的Alpha蒙版。
- 前景色预测:纠正了数据集中前景颜色的标注误差,提高了结果的准确性。
- 无额外训练数据:仅使用Composition-1k进行训练,却能在多种数据集上表现出色。
- 公开真实世界数据集:提供了一个真实的肖像数据集供研究者使用。
下一步行动
如果你对图像抠图技术感兴趣,或者需要在你的项目中应用这项技术,不妨试试MG Matting。项目代码和预训练权重已经更新,可直接在GitHub上获取。请确保尊重并遵守Creative Commons Attribution-NonCommercial 2.0 Generic(CC BY-NC 2.0)许可条款。
最后,请在引用本项目时,不要忘记引用以下BibTeX条目:
@article{yu2020mask,
title={Mask Guided Matting via Progressive Refinement Network},
author={Yu, Qihang and Zhang, Jianming and Zhang, He and Wang, Yilin and Lin, Zhe and Xu, Ning and Bai, Yutong and Yuille, Alan},
journal={arXiv preprint arXiv:2012.06722},
year={2020}
}
加入MG Matting的行列,让我们一起探索更多可能!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0117
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00