推荐开源项目:无需trimap的精细抠图——Mask Guided Matting via Progressive Refinement Network
在这个图像处理与计算机视觉领域日新月异的时代,我们迎来了一个创新性的开源项目:Mask Guided Matting(MG Matting),它由约翰斯·霍普金斯大学和Adobe Research的研究团队在CVPR 2021上提出。这个项目引入了一种全新的方法,能够实现无需trimap的精细化抠图,并且能预测前景颜色,最重要的是,它只需要已广泛使用的合成数据集Composition-1k进行训练。
1、项目介绍
MG Matting致力于解决传统抠图方法中对trimap依赖的问题,取而代之的是利用粗糙掩模作为引导输入来预测高细节度的Alpha蒙版。此外,项目还发现并解决了Composition-1k中的前景颜色标注不准确问题,通过预测前景颜色提升抠图质量。项目提供了大量可视化比较示例,包括与其他抠图方法的对比,甚至还能处理视频抠图。
2、项目技术分析
该技术基于Progressive Refinement Network,可以接受由自动分割或显著性模型产生的粗略掩模,进而估计出精确的Alpha蒙版。网络结构设计巧妙,逐步细化图像细节,降低了对精细trimap的依赖。同时,通过预测前景颜色,提高了对合成数据集中错误颜色注释的鲁棒性。
3、应用场景
MG Matting广泛应用于各种图像与视频后期制作中,如特效合成、虚拟现实、视频剪辑等。由于其出色的背景分离效果,它也能在人像美容、商品展示等领域发挥重要作用。此外,对于没有大量手动标注资源的环境,该项目提供了一个高效的解决方案。
4、项目特点
- 无trimap依赖:仅需粗略的掩模输入,就能产生高质量的Alpha蒙版。
- 前景色预测:纠正了数据集中前景颜色的标注误差,提高了结果的准确性。
- 无额外训练数据:仅使用Composition-1k进行训练,却能在多种数据集上表现出色。
- 公开真实世界数据集:提供了一个真实的肖像数据集供研究者使用。
下一步行动
如果你对图像抠图技术感兴趣,或者需要在你的项目中应用这项技术,不妨试试MG Matting。项目代码和预训练权重已经更新,可直接在GitHub上获取。请确保尊重并遵守Creative Commons Attribution-NonCommercial 2.0 Generic(CC BY-NC 2.0)许可条款。
最后,请在引用本项目时,不要忘记引用以下BibTeX条目:
@article{yu2020mask,
title={Mask Guided Matting via Progressive Refinement Network},
author={Yu, Qihang and Zhang, Jianming and Zhang, He and Wang, Yilin and Lin, Zhe and Xu, Ning and Bai, Yutong and Yuille, Alan},
journal={arXiv preprint arXiv:2012.06722},
year={2020}
}
加入MG Matting的行列,让我们一起探索更多可能!
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









