首页
/ 推荐开源项目:无需trimap的精细抠图——Mask Guided Matting via Progressive Refinement Network

推荐开源项目:无需trimap的精细抠图——Mask Guided Matting via Progressive Refinement Network

2024-05-21 04:52:50作者:何举烈Damon

在这个图像处理与计算机视觉领域日新月异的时代,我们迎来了一个创新性的开源项目:Mask Guided Matting(MG Matting),它由约翰斯·霍普金斯大学和Adobe Research的研究团队在CVPR 2021上提出。这个项目引入了一种全新的方法,能够实现无需trimap的精细化抠图,并且能预测前景颜色,最重要的是,它只需要已广泛使用的合成数据集Composition-1k进行训练。

1、项目介绍

MG Matting致力于解决传统抠图方法中对trimap依赖的问题,取而代之的是利用粗糙掩模作为引导输入来预测高细节度的Alpha蒙版。此外,项目还发现并解决了Composition-1k中的前景颜色标注不准确问题,通过预测前景颜色提升抠图质量。项目提供了大量可视化比较示例,包括与其他抠图方法的对比,甚至还能处理视频抠图。

2、项目技术分析

该技术基于Progressive Refinement Network,可以接受由自动分割或显著性模型产生的粗略掩模,进而估计出精确的Alpha蒙版。网络结构设计巧妙,逐步细化图像细节,降低了对精细trimap的依赖。同时,通过预测前景颜色,提高了对合成数据集中错误颜色注释的鲁棒性。

3、应用场景

MG Matting广泛应用于各种图像与视频后期制作中,如特效合成、虚拟现实、视频剪辑等。由于其出色的背景分离效果,它也能在人像美容、商品展示等领域发挥重要作用。此外,对于没有大量手动标注资源的环境,该项目提供了一个高效的解决方案。

4、项目特点

  • 无trimap依赖:仅需粗略的掩模输入,就能产生高质量的Alpha蒙版。
  • 前景色预测:纠正了数据集中前景颜色的标注误差,提高了结果的准确性。
  • 无额外训练数据:仅使用Composition-1k进行训练,却能在多种数据集上表现出色。
  • 公开真实世界数据集:提供了一个真实的肖像数据集供研究者使用。

下一步行动

如果你对图像抠图技术感兴趣,或者需要在你的项目中应用这项技术,不妨试试MG Matting。项目代码和预训练权重已经更新,可直接在GitHub上获取。请确保尊重并遵守Creative Commons Attribution-NonCommercial 2.0 Generic(CC BY-NC 2.0)许可条款。

最后,请在引用本项目时,不要忘记引用以下BibTeX条目:

@article{yu2020mask,
  title={Mask Guided Matting via Progressive Refinement Network},
  author={Yu, Qihang and Zhang, Jianming and Zhang, He and Wang, Yilin and Lin, Zhe and Xu, Ning and Bai, Yutong and Yuille, Alan},
  journal={arXiv preprint arXiv:2012.06722},
  year={2020}
}

加入MG Matting的行列,让我们一起探索更多可能!

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
34
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
834
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
33
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.63 K
1.45 K
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
58
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
go-iot-platformgo-iot-platform
Go IoT 平台,这是一个高效、可扩展的物联网解决方案,使用 Go 语言开发。本平台专注于提供稳定、可靠的 MQTT 客户端管理,以及对 MQTT上报数据的全面处理和分析。
Go
9
4