首页
/ 探索未来图像处理:Semantic Guided Human Matting (SGHM)

探索未来图像处理:Semantic Guided Human Matting (SGHM)

2024-05-29 16:42:27作者:霍妲思

项目简介

在数字艺术与图像处理领域,精确的人像抠图(或称人像蒙版)是创作关键的一环,它为各种创意应用打开了大门。【Semantic Guided Human Matting (SGHM)](https://github.com/XG-Chen/SGHM) 是一种创新的方法,它无需修剪图输入就能实现鲁棒且准确的人像抠图。这项技术由陈翔广等人在ACCV 2022大会上提出,借助强大的语义引导网络,SGHM能轻松应对复杂的图像场景。

项目介绍图片

技术分析

SGHM的核心在于其语义引导网络。该网络首先执行分割任务,生成初步的人体轮廓,然后将这些信息回流至抠图模块,引导模型集中关注分割区域的细节处理。通过共享语义编码器,SGHM在保证性能的同时减少了计算资源的需求。这种设计使得它能够在大约200张蒙版图像上训练出高质量的alpha细节,并能通过快速收集粗略人体掩模进一步提升效果。

网络结构图

应用场景

SGHM的应用广泛,涵盖了从社交媒体编辑到专业摄影后期,再到虚拟现实和增强现实等多个领域。无论是为了制作个性化的头像,还是为了让电影中的角色无缝地融入新的背景,或是为了在游戏环境中创建逼真的3D人物,SGHM都能提供出色的支持。

此外,在广告设计、在线教育平台以及互动式娱乐软件中,精确的人像抠图也是必不可少的技术,SGHM凭借其高效率和准确性,为这些行业带来了便利。

项目特点

  • 语义引导: 利用深度学习的语义理解能力,提高了抠图的精度和稳定性。

  • 数据高效: 只需少量标注数据,就能获得高质量的结果,降低了大规模数据标注的成本。

  • 卓越表现: 在5个基准测试中取得领先性能,展示出强大的泛化能力。

  • 易用性强: 提供了详细的使用指南和预训练模型,用户可以轻松进行图像和视频的测试及评估。

要开始使用SGHM,您只需满足基础的Python环境和相关库需求,例如PyTorch和OpenCV。项目还提供了测试图像、视频和评估的简单脚本,让您的实验过程更加顺畅。

# 测试图像
python test_image.py \
    --images-dir "PATH_TO_IMAGES_DIR" \
    --result-dir "PATH_TO_RESULT_DIR" \
    --pretrained-weight ./pretrained/SGHM-ResNet50.pth

# 视频测试
python test_video.py \
    --video "PATH_TO_INPUT_VIDEO" \
    --output-video "PATH_TO_OUTPUT_VIDEO" \
    --pretrained-weight ./pretrained/SGHM-ResNet50.pth

如果您在研究中使用了SGHM,请考虑给该项目点赞并引用相关的论文。这不仅是对作者工作的认可,也为社区发展贡献了一份力量。

@inproceedings{chen2022sghm,
  author = {Chen, Xiangguang and Zhu, Ye and Li, Yu and Fu, Bingtao and Sun, Lei and Shan, Ying and Liu, Shan},
  title = {Robust Human Matting via Semantic Guidance},
  booktitle={Proceedings of the Asian Conference on Computer Vision (ACCV)},
  year={2022}
}

最后,我们也要感谢BMV2MG 项目代码的贡献者,他们的工作为SGHM的发展打下了坚实的基础。

登录后查看全文
热门项目推荐

最新内容推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
155
1.99 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
pytorchpytorch
Ascend Extension for PyTorch
Python
38
72
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
517
49
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
345
1.32 K