首页
/ 探索未来图像处理:Semantic Guided Human Matting (SGHM)

探索未来图像处理:Semantic Guided Human Matting (SGHM)

2024-05-29 16:42:27作者:霍妲思

项目简介

在数字艺术与图像处理领域,精确的人像抠图(或称人像蒙版)是创作关键的一环,它为各种创意应用打开了大门。【Semantic Guided Human Matting (SGHM)](https://github.com/XG-Chen/SGHM) 是一种创新的方法,它无需修剪图输入就能实现鲁棒且准确的人像抠图。这项技术由陈翔广等人在ACCV 2022大会上提出,借助强大的语义引导网络,SGHM能轻松应对复杂的图像场景。

项目介绍图片

技术分析

SGHM的核心在于其语义引导网络。该网络首先执行分割任务,生成初步的人体轮廓,然后将这些信息回流至抠图模块,引导模型集中关注分割区域的细节处理。通过共享语义编码器,SGHM在保证性能的同时减少了计算资源的需求。这种设计使得它能够在大约200张蒙版图像上训练出高质量的alpha细节,并能通过快速收集粗略人体掩模进一步提升效果。

网络结构图

应用场景

SGHM的应用广泛,涵盖了从社交媒体编辑到专业摄影后期,再到虚拟现实和增强现实等多个领域。无论是为了制作个性化的头像,还是为了让电影中的角色无缝地融入新的背景,或是为了在游戏环境中创建逼真的3D人物,SGHM都能提供出色的支持。

此外,在广告设计、在线教育平台以及互动式娱乐软件中,精确的人像抠图也是必不可少的技术,SGHM凭借其高效率和准确性,为这些行业带来了便利。

项目特点

  • 语义引导: 利用深度学习的语义理解能力,提高了抠图的精度和稳定性。

  • 数据高效: 只需少量标注数据,就能获得高质量的结果,降低了大规模数据标注的成本。

  • 卓越表现: 在5个基准测试中取得领先性能,展示出强大的泛化能力。

  • 易用性强: 提供了详细的使用指南和预训练模型,用户可以轻松进行图像和视频的测试及评估。

要开始使用SGHM,您只需满足基础的Python环境和相关库需求,例如PyTorch和OpenCV。项目还提供了测试图像、视频和评估的简单脚本,让您的实验过程更加顺畅。

# 测试图像
python test_image.py \
    --images-dir "PATH_TO_IMAGES_DIR" \
    --result-dir "PATH_TO_RESULT_DIR" \
    --pretrained-weight ./pretrained/SGHM-ResNet50.pth

# 视频测试
python test_video.py \
    --video "PATH_TO_INPUT_VIDEO" \
    --output-video "PATH_TO_OUTPUT_VIDEO" \
    --pretrained-weight ./pretrained/SGHM-ResNet50.pth

如果您在研究中使用了SGHM,请考虑给该项目点赞并引用相关的论文。这不仅是对作者工作的认可,也为社区发展贡献了一份力量。

@inproceedings{chen2022sghm,
  author = {Chen, Xiangguang and Zhu, Ye and Li, Yu and Fu, Bingtao and Sun, Lei and Shan, Ying and Liu, Shan},
  title = {Robust Human Matting via Semantic Guidance},
  booktitle={Proceedings of the Asian Conference on Computer Vision (ACCV)},
  year={2022}
}

最后,我们也要感谢BMV2MG 项目代码的贡献者,他们的工作为SGHM的发展打下了坚实的基础。

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
34
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
834
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
33
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.63 K
1.45 K
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
58
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
go-iot-platformgo-iot-platform
Go IoT 平台,这是一个高效、可扩展的物联网解决方案,使用 Go 语言开发。本平台专注于提供稳定、可靠的 MQTT 客户端管理,以及对 MQTT上报数据的全面处理和分析。
Go
9
4