探索未来图像处理:Semantic Guided Human Matting (SGHM)
项目简介
在数字艺术与图像处理领域,精确的人像抠图(或称人像蒙版)是创作关键的一环,它为各种创意应用打开了大门。【Semantic Guided Human Matting (SGHM)](https://github.com/XG-Chen/SGHM) 是一种创新的方法,它无需修剪图输入就能实现鲁棒且准确的人像抠图。这项技术由陈翔广等人在ACCV 2022大会上提出,借助强大的语义引导网络,SGHM能轻松应对复杂的图像场景。

技术分析
SGHM的核心在于其语义引导网络。该网络首先执行分割任务,生成初步的人体轮廓,然后将这些信息回流至抠图模块,引导模型集中关注分割区域的细节处理。通过共享语义编码器,SGHM在保证性能的同时减少了计算资源的需求。这种设计使得它能够在大约200张蒙版图像上训练出高质量的alpha细节,并能通过快速收集粗略人体掩模进一步提升效果。

应用场景
SGHM的应用广泛,涵盖了从社交媒体编辑到专业摄影后期,再到虚拟现实和增强现实等多个领域。无论是为了制作个性化的头像,还是为了让电影中的角色无缝地融入新的背景,或是为了在游戏环境中创建逼真的3D人物,SGHM都能提供出色的支持。
此外,在广告设计、在线教育平台以及互动式娱乐软件中,精确的人像抠图也是必不可少的技术,SGHM凭借其高效率和准确性,为这些行业带来了便利。
项目特点
-
语义引导: 利用深度学习的语义理解能力,提高了抠图的精度和稳定性。
-
数据高效: 只需少量标注数据,就能获得高质量的结果,降低了大规模数据标注的成本。
-
卓越表现: 在5个基准测试中取得领先性能,展示出强大的泛化能力。
-
易用性强: 提供了详细的使用指南和预训练模型,用户可以轻松进行图像和视频的测试及评估。
要开始使用SGHM,您只需满足基础的Python环境和相关库需求,例如PyTorch和OpenCV。项目还提供了测试图像、视频和评估的简单脚本,让您的实验过程更加顺畅。
# 测试图像
python test_image.py \
--images-dir "PATH_TO_IMAGES_DIR" \
--result-dir "PATH_TO_RESULT_DIR" \
--pretrained-weight ./pretrained/SGHM-ResNet50.pth
# 视频测试
python test_video.py \
--video "PATH_TO_INPUT_VIDEO" \
--output-video "PATH_TO_OUTPUT_VIDEO" \
--pretrained-weight ./pretrained/SGHM-ResNet50.pth
如果您在研究中使用了SGHM,请考虑给该项目点赞并引用相关的论文。这不仅是对作者工作的认可,也为社区发展贡献了一份力量。
@inproceedings{chen2022sghm,
author = {Chen, Xiangguang and Zhu, Ye and Li, Yu and Fu, Bingtao and Sun, Lei and Shan, Ying and Liu, Shan},
title = {Robust Human Matting via Semantic Guidance},
booktitle={Proceedings of the Asian Conference on Computer Vision (ACCV)},
year={2022}
}
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00