首页
/ CIFAR-10.1:新一代图像分类测试集

CIFAR-10.1:新一代图像分类测试集

2024-09-26 15:29:31作者:瞿蔚英Wynne

项目介绍

CIFAR-10.1是一个全新的测试集,专为CIFAR-10数据集设计。CIFAR-10.1包含约2,000张新测试图像,这些图像是在CIFAR-10数据集发布多年后采集的。为了最小化与原始数据集的分布偏移,CIFAR-10.1的数据收集过程经过了精心设计。该项目的目标是为研究人员提供一个更可靠的测试平台,以评估和改进图像分类模型的泛化能力。

项目技术分析

数据集版本

CIFAR-10.1目前有两个主要版本:

  • v4:这是我们首次测试分类器的版本,与我们所评估的分类器独立。该版本基于TinyImages数据集中每个类别的25个最高频关键词构建,存在轻微的类别不平衡。v4包含2,021张图像。
  • v6:这是基于改进的关键词分配构建的版本,完全类别平衡。v6包含2,000张图像,推荐用于未来的实验。

数据加载

数据集文件以NumPy二进制格式存储在datasets目录中,用户可以通过提供的Jupyter Notebook脚本inspect_dataset_simple.ipynb轻松浏览数据集。

数据集创建流程

CIFAR-10.1的创建过程包括多个阶段:

  1. 从TinyImages中提取数据:通过自动化脚本从庞大的TinyImages数据集中提取相关数据。
  2. 收集候选图像:通过Jupyter Notebook脚本确定关键词并收集相应的图像。
  3. 组装新数据集:从候选图像池中采样并创建新数据集,同时进行最终的质量检查。
  4. 模型预测检查:在最终数据集上运行多种分类器,并通过Notebook分析结果。

项目及技术应用场景

CIFAR-10.1适用于以下场景:

  • 图像分类模型评估:研究人员可以使用CIFAR-10.1来测试和验证其图像分类模型的泛化能力。
  • 数据集改进研究:通过分析CIFAR-10.1与CIFAR-10的差异,研究人员可以探索如何改进数据集的构建和选择过程。
  • 机器学习教育:教育机构可以将CIFAR-10.1作为教学工具,帮助学生理解数据集偏移和模型泛化问题。

项目特点

  • 新测试集:提供了一个全新的测试集,避免了与原始CIFAR-10数据集的潜在偏移问题。
  • 数据质量高:数据收集过程经过精心设计,确保了数据集的高质量和低分布偏移。
  • 易于使用:提供了详细的文档和示例脚本,方便用户加载和使用数据集。
  • 开源共享:项目代码和数据集均开源,促进了学术研究和社区贡献。

通过使用CIFAR-10.1,研究人员和开发者可以更准确地评估和改进其图像分类模型,推动机器学习领域的进步。立即访问CIFAR-10.1 GitHub仓库,开始您的探索之旅吧!

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
611
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
112
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
58
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
383
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0