CIFAR-10.1:新一代图像分类测试集
2024-09-26 05:08:39作者:瞿蔚英Wynne
项目介绍
CIFAR-10.1是一个全新的测试集,专为CIFAR-10数据集设计。CIFAR-10.1包含约2,000张新测试图像,这些图像是在CIFAR-10数据集发布多年后采集的。为了最小化与原始数据集的分布偏移,CIFAR-10.1的数据收集过程经过了精心设计。该项目的目标是为研究人员提供一个更可靠的测试平台,以评估和改进图像分类模型的泛化能力。
项目技术分析
数据集版本
CIFAR-10.1目前有两个主要版本:
- v4:这是我们首次测试分类器的版本,与我们所评估的分类器独立。该版本基于TinyImages数据集中每个类别的25个最高频关键词构建,存在轻微的类别不平衡。v4包含2,021张图像。
- v6:这是基于改进的关键词分配构建的版本,完全类别平衡。v6包含2,000张图像,推荐用于未来的实验。
数据加载
数据集文件以NumPy二进制格式存储在datasets
目录中,用户可以通过提供的Jupyter Notebook脚本inspect_dataset_simple.ipynb
轻松浏览数据集。
数据集创建流程
CIFAR-10.1的创建过程包括多个阶段:
- 从TinyImages中提取数据:通过自动化脚本从庞大的TinyImages数据集中提取相关数据。
- 收集候选图像:通过Jupyter Notebook脚本确定关键词并收集相应的图像。
- 组装新数据集:从候选图像池中采样并创建新数据集,同时进行最终的质量检查。
- 模型预测检查:在最终数据集上运行多种分类器,并通过Notebook分析结果。
项目及技术应用场景
CIFAR-10.1适用于以下场景:
- 图像分类模型评估:研究人员可以使用CIFAR-10.1来测试和验证其图像分类模型的泛化能力。
- 数据集改进研究:通过分析CIFAR-10.1与CIFAR-10的差异,研究人员可以探索如何改进数据集的构建和选择过程。
- 机器学习教育:教育机构可以将CIFAR-10.1作为教学工具,帮助学生理解数据集偏移和模型泛化问题。
项目特点
- 新测试集:提供了一个全新的测试集,避免了与原始CIFAR-10数据集的潜在偏移问题。
- 数据质量高:数据收集过程经过精心设计,确保了数据集的高质量和低分布偏移。
- 易于使用:提供了详细的文档和示例脚本,方便用户加载和使用数据集。
- 开源共享:项目代码和数据集均开源,促进了学术研究和社区贡献。
通过使用CIFAR-10.1,研究人员和开发者可以更准确地评估和改进其图像分类模型,推动机器学习领域的进步。立即访问CIFAR-10.1 GitHub仓库,开始您的探索之旅吧!
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp课程页面空白问题的技术分析与解决方案3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析5 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
162
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

React Native鸿蒙化仓库
C++
199
279

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到科学研究中,共同推动知识的进步。
HTML
22
1

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
557

基于QEMU构建的RISC-V64 SOC,支持Linux,baremetal, RTOS等,适合用来学习Linux,后续还会添加大量的controller,实现无需实体开发板,即可学习Linux和RISC-V架构
C
19
5