探索CAI神经网络API:高性能深度学习框架
CAI神经网络API是一个基于Pascal的深度学习库,专为AVX,AVX2和AVX512指令集优化,并支持AMD、Intel和NVIDIA的OpenCL设备。这个项目起源于名为CAI的更大项目,同时也是Keras基的K-CAI NEURAL API的姐妹项目。在预训练神经API网络仓库中,您可以找到已训练好的神经网络模型。
为什么选择Pascal?
- 速度超快:Pascal编译后的代码性能卓越,甚至在某些架构上超越了主流API。
- 易于理解:Pascal语法简洁,源码可读性强,使得您可以在实现高性能原生代码的同时,保持代码清晰易懂。
先决条件
要使用CAI NEURAL API,您需要安装Lazarus开发环境。如果您的设备支持OpenCL,还需要安装对应的驱动程序。本项目提供了一些示例,涉及到CIFAR-10,CIFAR-100,MNIST,Fashion MNIST以及Places365-Standard Small images 256x256数据集。
是否适用于Delphi?
尽管该项目基于Lazarus,但自v0.98版本以来,有多个单元可以与Delphi兼容,您可以在Delphi环境中创建并运行神经网络。
安装
克隆此项目,将neural
文件夹添加到Lazarus的单位搜索路径中,即可开始使用!
文档
文档包括:
- 简单示例
- 图像分类示例
- 视频教程
- 高级示例
本README中,您将了解以下信息:
- 数据结构(卷积)
- 可用的神经网络层
- 数据集支持
- 训练神经网络
- 并行计算
- 同作者的其他科学出版物
简单示例先来!
假设你想训练一个神经网络学习有两个输入和一个输出的函数,你可以从以下代码开始:
NN.AddLayer([
TNNetInput.Create(2),
TNNetFullConnectReLU.Create(32),
TNNetFullConnectReLU.Create(32),
TNNetFullConnectLinear.Create(1)
]);
上述代码包含两个输入层(TNNetInput
),两个全连接层(TNNetFullConnectReLU
),每个有32个神经元,以及一个输出层(TNNetFullConnectLinear
)。
可以在这些源代码示例中了解更多关于如何构建和训练简单神经网络的信息:
- 训练神经网络学习勾股定理
- 使用FitLoading训练神经网络学习勾股定理
- 使用neuralfit单元训练神经网络学习AND、OR和XOR
- 不使用neuralfit单元训练神经网络学习AND、OR和XOR
载入与保存神经网络
载入很简单:
NN := TNNet.Create;
NN.LoadFromFile('MyTrainedNeuralNetwork.nn');
保存同样容易:
NN.SaveToFile('MyTrainedNeuralNetwork.nn');
自然语言处理:简单文本生成
这个NLP源代码示例展示了一个简单的神经网络模型,用于在Tiny Stories数据集上进行训练。经过训练后,你可以执行以下代码进行文本生成:
WriteLn(GenerateStringFromChars(NFit.NN, 'once', FSampler), '.');
WriteLn(GenerateStringFromChars(NFit.NN, 'one ', FSampler), '.');
这将产生如下的输出:
once upon a time, there was a little girl named lily. she loved to play outside i.
one day, a little girl named lily was playing in her garden. she saw a big car wi.
可以直接在Colab上查看原始训练文件并自行运行: https://colab.research.google.com/github/joaopauloschuler/neural-api/blob/master/examples/SimpleNLP/NLP_CAI_TinyStories_Simple_Example.ipynb
创建自己的聊天机器人
一旦你的神经网络被训练好,你可以使用以下代码运行自己的聊天机器人:
var
S: string;
oSampler: TNNetSamplerBase;
NN: TNNet;
begin
oSampler := TNNetSamplerTopP.Create(0.6);
NN := TNNet.Create();
WriteLn('Loading neural network.');
NN.LoadFromFile('MyNeuralNetwork.nn');
NN.DebugStructure();
WriteLn();
WriteLn('Write something and I will reply.');
repeat
Write('User: ');
ReadLn(S);
WriteLn('Neural network: ', GenerateStringFromChars(NN, LowerCase(S), oSampler), '.');
until S = 'exit';
NN.Free;
oSampler.Free;
end;
图像分类简易示例
CIFAR-10图像分类示例
CIFAR-10是机器学习和计算机视觉算法常用的图像集合,由加拿大高级研究所(CIFAR)创建。它包含60,000张32x32像素的彩色图像,分为10个不同的类别,每个类别有6,000张图像。类别包括飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。尽管分辨率较低且尺寸较小,但在高准确度上的挑战使得CIFAR-10成为测试机器学习技术进步的良好数据集。
以下是一个用于CIFAR-10图像分类的源代码示例:
NN := TNNet.Create();
NN.AddLayer([
TNNetInput.Create(32, 32, 3), //32x32x3 输入图像
TNNetConvolutionReLU.Create({Features=}16, {FeatureSize=}5, {Padding=}0, {Stride=}1, {SuppressBias=}0),
TNNetMaxPool.Create({Size=}2),
TNNetConvolutionReLU.Create({Features=}32, {FeatureSize=}5, {Padding=}0, {Stride=}1, {SuppressBias=}0),
TNNetMaxPool.Create({Size=}2),
TNNetConvolutionReLU.Create({Features=}32, {FeatureSize=}5, {Padding=}0, {Stride=}1, {SuppressBias=}0),
TNNetFullConnectReLU.Create({Neurons=}32),
TNNetFullConnectLinear.Create(NumClasses),
TNNetSoftMax.Create()
]);
CreateCifar10Volumes(ImgTrainingVolumes, ImgValidationVolumes, ImgTestVolumes);
WriteLn('Neural Network will minimize error with:');
WriteLn(' Layers: ', NN.CountLayers());
WriteLn(' Neurons:', NN.CountNeurons());
WriteLn(' Weights:', NN.CountWeights());
NeuralFit := TNeuralImageFit.Create;
NeuralFit.InitialLearningRate := fLearningRate;
NeuralFit.Inertia := fInertia;
NeuralFit.Fit(NN, ImgTrainingVolumes, ImgValidationVolumes, ImgTestVolumes, NumClasses, {batchsize}128, {epochs}100);
这些示例训练神经网络对图像进行分类,例如判断图像是否包含猫、狗或飞机等。
您可以使用TNNet.SaveToFile
和TNNet.LoadFromFile
方法保存和加载训练模型。该文件格式是可移植的,这意味着您可以在CPU上训练并在GPU上运行,或者在AMD硬件上训练然后在ARM设备上运行。以下是一个简单示例,演示如何加载预先训练好的模型进行图像分类:
procedure ClassifyOneImageSimple;
var
NN: TNNet;
ImageFileName: string;
NeuralFit: TNeuralImageFit;
begin
WriteLn('Loading Neural Network...');
NN := TNNet.Create;
NN.LoadFromFile('SimplePlantLeafDisease-20230720.nn');
NeuralFit := TNeuralImageFit.Create;
ImageFileName := 'plant/Apple___Black_rot/image (1).JPG';
WriteLn('Processing image: ', ImageFileName);
WriteLn(
'The class of the image is: ',
N
);
}
总之,CAI神经网络API提供了一个强大而灵活的平台,适合各种任务,从自然语言处理到图像识别,甚至创建自定义聊天机器人。其高效性和可移植性使其成为一个理想的工具,无论您是在研究还是实际应用中探索深度学习。别忘了,开始探索只需几个简单的步骤,现在就加入这个充满可能性的世界吧!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









