Robin_stocks项目中的Robinhood设备验证机制解析与解决方案
2025-07-07 05:08:39作者:段琳惟
背景介绍
Robinhood作为美国流行的股票交易平台,近年来不断加强其安全验证机制。在robin_stocks开源项目中,开发者遇到了设备验证流程变更带来的登录问题。本文将深入分析这一机制的技术原理,并提供完整的解决方案。
设备验证机制解析
1. 设备令牌生成原理
Robinhood采用独特的设备标识机制,通过以下算法生成设备令牌:
- 生成16个0-255的随机整数
- 将每个整数转换为2位16进制表示
- 按特定格式拼接(4-2-2-2-6的分组模式)
这种机制确保了每个设备都有唯一的标识符,防止跨设备滥用。
2. 验证流程演进
Robinhood的验证流程经历了几个阶段:
- 初始阶段:仅需用户名密码
- 二阶段验证:增加短信验证码
- 当前阶段:强制设备批准验证
新的验证流程引入了Sheriff Challenge机制,需要用户通过已认证设备(如手机APP)进行授权。
技术实现方案
核心代码解析
设备令牌生成
def generate_device_token():
rands = [random.randint(0, 255) for _ in range(16)]
hexadecimals = [format(x, "02x") for x in rands]
return "-".join([
"".join(hexadecimals[:4]), # 前4字节
"".join(hexadecimals[4:6]), # 接下来2字节
"".join(hexadecimals[6:8]), # 接下来2字节
"".join(hexadecimals[8:10]), # 接下来2字节
"".join(hexadecimals[10:]) # 剩余6字节
])
验证流程处理
验证流程的核心是处理Sheriff Challenge:
- 初始化验证请求
- 获取验证状态
- 提交验证响应
- 确认验证结果
def _validate_sherrif_id(device_token, workflow_id, mfa_code=None):
# 初始化验证请求
payload = {
'device_id': device_token,
'flow': 'suv',
'input': {'workflow_id': workflow_id}
}
response = requests.post(VERIFICATION_URL, json=payload)
# 处理验证响应
if "id" in response.json():
inquiry_url = f"{INQUIRY_BASE_URL}/{response.json()['id']}/user_view/"
res = requests.get(inquiry_url).json()
# 提交验证码
challenge_id = res['context']['sheriff_challenge']['id']
challenge_response = requests.post(
f"{CHALLENGE_URL}/{challenge_id}/respond/",
json={'response': mfa_code or input("请输入验证码: ")}
)
# 确认验证结果
if challenge_response.json().get("status") == "validated":
final_response = requests.post(
inquiry_url,
json={"sequence": 0, "user_input": {"status": "continue"}}
)
return final_response.json()["result"] == "workflow_status_approved"
最佳实践建议
-
验证方式选择:
- 推荐使用短信验证而非设备验证,稳定性更高
- 设备验证更适合长期保持登录状态的场景
-
错误处理:
- 实现重试机制,建议3-5次重试
- 每次重试间隔10-30秒为宜
-
会话管理:
- 成功登录后保存access token
- 设置合理的token过期时间(默认86400秒/24小时)
-
安全注意事项:
- 不要硬编码用户名密码
- 妥善保管设备令牌
- 敏感信息使用环境变量存储
完整解决方案
将验证方式切换回短信验证后,完整的登录流程如下:
- 生成设备令牌
- 发送登录请求
- 处理可能的验证流程
- 获取并保存access token
def robinhood_login(username, password):
device_token = generate_device_token()
payload = {
"grant_type": "password",
"scope": "internal",
"client_id": CLIENT_ID,
"device_token": device_token,
"username": username,
"password": password,
}
response = requests.post(LOGIN_URL, data=payload)
if response.status_code != 200:
data = response.json()
if "verification_workflow" in data:
if _validate_sherrif_id(device_token, data["verification_workflow"]["id"]):
response = requests.post(LOGIN_URL, data=payload)
return response.json().get("access_token")
总结
Robinhood的安全机制不断升级,开发者需要及时调整代码适配。本文提供的解决方案通过:
- 正确生成设备标识
- 处理Sheriff Challenge验证流程
- 实现完整的登录生命周期管理
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
582
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
374
仓颉编程语言运行时与标准库。
Cangjie
130
387
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205