XTuner项目中LLaVA-InternLM2-7B模型的继续微调方法解析
2025-06-13 23:47:10作者:尤峻淳Whitney
背景介绍
在XTuner项目中,LLaVA-InternLM2-7B是一个重要的多模态大语言模型,它结合了视觉编码器和语言模型的能力。许多开发者希望基于已经微调过的版本进行进一步的指令微调,但官方目前并未直接提供完整的.pth模型文件。
模型加载现状
当前,XTuner项目发布的LLaVA-InternLM2-7B模型包含三个主要组件:
- LLM适配器(llm_adapter)
- 视觉编码器适配器(visual_encoder_adapter)
- 投影器(projector)
这种分散的组件形式虽然节省了存储空间,但对于希望继续微调的开发者来说,直接使用起来不太方便。
解决方案实现
为了能够继续微调模型,我们需要将这些分散的组件整合成一个完整的.pth模型文件。以下是实现这一目标的技术方案:
-
配置准备:首先需要准备模型的配置文件,这个文件定义了模型的基本结构和参数。
-
模型构建:使用XTuner提供的构建器(BUILDER)根据配置文件创建基础模型结构。
-
组件加载:
- 从Hugging Face仓库下载或加载本地已有的LLaVA模型
- 分别加载LLM适配器和视觉编码器适配器到对应的模型组件
- 加载独立的投影器组件
-
模型整合:将所有组件整合到一个完整的模型结构中。
-
保存模型:将整合后的模型状态字典保存为.pth格式文件,便于后续直接加载和继续微调。
关键技术点
-
PeftModel的应用:使用PeftModel来加载适配器组件,这是参数高效微调的关键技术。
-
状态字典处理:将整个模型的状态字典统一保存,确保模型结构的完整性。
-
配置覆盖:通过cfg-options参数可以灵活覆盖配置文件中的某些设置,增加了方案的灵活性。
实际应用建议
对于希望继续微调LLaVA-InternLM2-7B的开发者,建议:
- 先使用提供的脚本生成完整的.pth模型文件
- 将此文件作为pretrained_pth参数值用于后续微调
- 在继续微调时,可以根据需要调整学习率等超参数
- 对于大规模微调,可以考虑使用分布式训练策略
总结
通过这种方案,开发者可以有效地将分散的模型组件整合为完整的模型文件,为后续的指令微调和其他定制化训练提供了便利。这种方法不仅适用于LLaVA-InternLM2-7B模型,其思路也可以扩展到其他类似的分散式模型组件的整合工作中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C077
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
188
77
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692