优化Ardalis.Specification中的表达式构造以减少内存占用
在软件开发中,性能优化是一个永恒的话题,特别是在构建高性能库时,每一个字节的内存使用都值得关注。Ardalis.Specification作为一个流行的规范模式实现库,在其9.0版本中专注于减少内存分配,提升性能。本文将深入分析该库中表达式构造的优化策略。
表达式构造的内存优化背景
在规范模式实现中,Where、Order和Search等表达式信息通常被封装在特定的容器类中。这些容器类不仅存储了原始的Lambda表达式,还包含了用于内存评估的编译后委托。在之前的实现中,这些委托被封装在Lazy实例中,以实现延迟初始化。
然而,Lazy虽然提供了线程安全的延迟初始化功能,但每个实例带来了32字节的内存开销。考虑到大多数用户可能根本不会使用内存评估功能,这种设计就显得不够高效了。
从Lazy到直接初始化的转变
新的优化方案提出了一个大胆的改变:移除Lazy包装,直接将委托存储为可空的Func<>类型。这个改变基于几个关键观察点:
- 规范实例本身并不是线程安全的,因此不需要Lazy提供的线程安全保证
- 内存评估功能的使用频率较低
- 即使发生竞态条件,最坏情况也只是表达式被多次编译
这种改变虽然牺牲了极少数并发场景下的完美行为,但为大多数使用场景节省了宝贵的内存资源。
IncludeExpressionInfo的进一步优化
IncludeExpressionInfo类原本存储了多个类型信息属性:
- LambdaExpression:原始的Lambda表达式
- EntityType:实体类型
- PropertyType:属性类型
- PreviousPropertyType:前一个属性类型
- Type:包含类型枚举
分析发现,这些属性中存在冗余:
- EntityType已经作为泛型参数T可用,无需重复存储
- PropertyType可以从LambdaExpression.ReturnType获取
- PreviousPropertyType可以在评估过程中动态推导
通过移除这些冗余属性,每个IncludeExpressionInfo实例可节省24字节内存空间。
优化带来的影响
这些优化虽然微小,但在大规模应用中会产生显著的累积效应。特别是当应用需要创建和操作大量规范实例时,减少的内存占用可以带来:
- 更低的内存压力
- 更好的缓存局部性
- 减少的GC压力
向后兼容性考虑
这些优化不可避免地引入了一些破坏性变更,特别是移除了IncludeExpressionInfo中的三个属性。对于依赖这些属性的现有代码,需要进行相应的调整。不过,考虑到这些属性要么是冗余的,要么可以通过其他方式获取,迁移成本相对较低。
总结
Ardalis.Specification 9.0版本中的这些优化展示了性能调优的经典思路:识别并消除不必要的内存分配,特别针对常见使用场景进行优化。通过仔细分析每个数据结构的内存占用,并权衡功能完整性与性能需求,开发者可以构建出既功能强大又高效的内存使用的库。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00