django-autofixture 使用文档
2024-12-20 20:08:11作者:咎竹峻Karen
本文档旨在帮助用户了解和使用 django-autofixture 项目,包括安装指南、使用说明、API 使用文档和项目安装方式。
1. 安装指南
项目要求
- 支持 Django 1.4 至 1.9 版本
安装方式
- 将
autofixture包复制到项目目录中。 - 使用
pip命令从 Python 包索引安装django-autofixture:pip install django-autofixture - 如果没有
pip,可以使用easy_install命令安装:easy_install django-autofixture - 在 Django 设置文件中,将
'autofixture'添加到INSTALLED_APPS设置中。
2. 项目使用说明
管理命令
loadtestdata 命令用于加载测试数据,其语法如下:
python manage.py loadtestdata [options] app.Model:# [app.Model:# ...]
示例:创建三个 Category 对象和二十个 Entry 对象
python manage.py loadtestdata blog.Category:3 blog.Entry:20
使用 autofixture 作为单元测试工具
创建 AutoFixture 实例,并调用 create 方法生成测试数据。
示例:创建十个 Entry 对象
from autofixture import AutoFixture
fixture = AutoFixture(Entry)
entries = fixture.create(10)
设置字段值
可以使用 field_values 属性为特定字段设置默认值。
示例:设置 Listing 模型中的 needed_players 字段为 5
from main.models import Listing
fixture = AutoFixture(Listing, field_values={'needed_players': 5})
entries = fixture.create(30)
生成相关模型
可以使用 generate_fk 和 generate_m2m 属性为外键和多对多关系生成相关模型。
示例:自动生成 Entry 模型的作者和分类
fixture = AutoFixture(Entry, generate_fk=['author'], generate_m2m={'categories': (1, 3)})
entries = fixture.create(10)
限制外键模型集合
可以使用 limit_choices_to 属性限制外键字段的模型集合。
示例:将 Entry 模型的 blog 字段限制为不属于 Yoko Ono 的博客
from autofixture import AutoFixture, generators
fixture = AutoFixture(Entry, field_values={
'blog': generators.InstanceSelector(Blog, limit_choices_to={'name__ne': "Yoko Ono's blog"})
})
自定义 autofixture
可以通过子类化 AutoFixture 创建自定义 autofixture。
示例:为 MyModel 模型创建自定义 autofixture
from models import MyModel
from autofixture import generators, register, AutoFixture
class MyModelAutoFixture(AutoFixture):
field_values = {
'name': generators.StaticGenerator('this_is_my_static_name'),
}
register(MyModel, MyModelAutoFixture)
3. 项目 API 使用文档
详细 API 文档请参考 GitHub 项目 wiki。
4. 项目安装方式
请参考第 1 节中的安装指南。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19