django-autofixture 使用文档
2024-12-20 20:08:11作者:咎竹峻Karen
本文档旨在帮助用户了解和使用 django-autofixture 项目,包括安装指南、使用说明、API 使用文档和项目安装方式。
1. 安装指南
项目要求
- 支持 Django 1.4 至 1.9 版本
安装方式
- 将
autofixture包复制到项目目录中。 - 使用
pip命令从 Python 包索引安装django-autofixture:pip install django-autofixture - 如果没有
pip,可以使用easy_install命令安装:easy_install django-autofixture - 在 Django 设置文件中,将
'autofixture'添加到INSTALLED_APPS设置中。
2. 项目使用说明
管理命令
loadtestdata 命令用于加载测试数据,其语法如下:
python manage.py loadtestdata [options] app.Model:# [app.Model:# ...]
示例:创建三个 Category 对象和二十个 Entry 对象
python manage.py loadtestdata blog.Category:3 blog.Entry:20
使用 autofixture 作为单元测试工具
创建 AutoFixture 实例,并调用 create 方法生成测试数据。
示例:创建十个 Entry 对象
from autofixture import AutoFixture
fixture = AutoFixture(Entry)
entries = fixture.create(10)
设置字段值
可以使用 field_values 属性为特定字段设置默认值。
示例:设置 Listing 模型中的 needed_players 字段为 5
from main.models import Listing
fixture = AutoFixture(Listing, field_values={'needed_players': 5})
entries = fixture.create(30)
生成相关模型
可以使用 generate_fk 和 generate_m2m 属性为外键和多对多关系生成相关模型。
示例:自动生成 Entry 模型的作者和分类
fixture = AutoFixture(Entry, generate_fk=['author'], generate_m2m={'categories': (1, 3)})
entries = fixture.create(10)
限制外键模型集合
可以使用 limit_choices_to 属性限制外键字段的模型集合。
示例:将 Entry 模型的 blog 字段限制为不属于 Yoko Ono 的博客
from autofixture import AutoFixture, generators
fixture = AutoFixture(Entry, field_values={
'blog': generators.InstanceSelector(Blog, limit_choices_to={'name__ne': "Yoko Ono's blog"})
})
自定义 autofixture
可以通过子类化 AutoFixture 创建自定义 autofixture。
示例:为 MyModel 模型创建自定义 autofixture
from models import MyModel
from autofixture import generators, register, AutoFixture
class MyModelAutoFixture(AutoFixture):
field_values = {
'name': generators.StaticGenerator('this_is_my_static_name'),
}
register(MyModel, MyModelAutoFixture)
3. 项目 API 使用文档
详细 API 文档请参考 GitHub 项目 wiki。
4. 项目安装方式
请参考第 1 节中的安装指南。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355