PySINDy模型拟合不一致问题的技术分析与解决方案
2025-07-10 16:02:51作者:韦蓉瑛
问题背景
在使用PySINDy(Python中的稀疏识别非线性动力学系统库)进行动力学系统建模时,用户遇到了一个看似奇怪的现象:在Jupyter Notebook中重复运行相同的模型拟合代码时,得到的模型结果不一致。这种不一致性表现在模型方程的输出形式以及后续的模拟结果上。
问题重现
用户提供了以下关键代码片段:
# 生成时间序列
t_span = (0, 24)
dt = 20
t_eval = np.linspace(t_span[0], t_span[-1], dt)
# 第一次拟合
model.fit(sindy_data_list, t=dt)
model.print()
# 第二次拟合
model.fit(sindy_data_list, t=t_eval)
model.print()
问题根源分析
经过深入分析,发现问题出在时间序列的生成方式上。用户错误地使用了np.linspace
函数:
np.linspace
的第三个参数num
表示要生成的样本数量,而不是步长- 用户误将
dt=20
作为步长参数传递给linspace
,实际上它被解释为要生成20个点 - 这导致两次拟合使用的时间序列实际上不同:
- 第一次使用
t=dt
(单个数值20) - 第二次使用
t=t_eval
(20个均匀分布的时间点)
- 第一次使用
正确的解决方案
正确的做法应该是:
# 正确生成时间序列的方法
dt = 1.0 # 实际步长
t_eval = np.arange(t_span[0], t_span[-1] + dt, dt) # 使用arange而不是linspace
# 一致的拟合调用
model.fit(sindy_data_list, t=t_eval)
技术要点总结
-
时间序列生成:
- 使用
np.arange
生成固定步长的时间序列 - 确保时间序列的端点包含在内(注意
stop
参数需要加上步长)
- 使用
-
PySINDy拟合:
- 当提供单个数值
t=dt
时,PySINDy会假设均匀采样 - 当提供数组
t=t_eval
时,PySINDy会使用精确的时间点
- 当提供单个数值
-
数值微分:
- 不一致的时间序列会导致数值微分结果不同
- 这直接影响稀疏回归的输入数据质量
最佳实践建议
- 始终明确指定时间序列的生成方式
- 在Jupyter Notebook中工作时,注意单元格执行的顺序和状态
- 对于重要的建模工作,建议:
- 使用固定随机种子
- 记录所有参数
- 验证时间序列的生成是否符合预期
结论
这个案例展示了在使用科学计算库时,对基础函数行为的准确理解至关重要。特别是当涉及时间序列处理时,微小的参数误解可能导致完全不同的结果。通过正确使用np.arange
替代np.linspace
,可以确保PySINDy模型拟合的一致性和可靠性。
对于PySINDy用户来说,理解时间序列参数如何影响模型拟合过程是获得可靠结果的关键一步。这个问题也提醒我们,在科学计算中,细节决定成败,每个参数的选择都需要慎重考虑。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44