Buddy-MLIR 开源项目教程
2024-09-14 20:23:32作者:冯爽妲Honey
1. 项目介绍
Buddy-MLIR 是一个基于 MLIR(Multi-Level Intermediate Representation)的编译器框架,旨在从领域特定语言(DSL)到领域特定架构(DSA)的协同设计生态系统中提供支持。该项目的主要目标是简化从高级语言到特定硬件架构的编译过程,从而提高开发效率和性能优化。
Buddy-MLIR 的核心功能包括:
- DSL 前端支持:支持多种领域特定语言的编译。
- IR 级优化:提供丰富的中间表示优化技术。
- DSA 后端代码生成:生成针对特定硬件架构的优化代码。
- MLIR 开发工具:提供一系列工具来辅助 MLIR 的开发和调试。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的机器上已经安装了以下依赖:
- Git
- CMake
- Ninja
- Python 3
2.2 克隆项目
首先,克隆 Buddy-MLIR 项目到本地:
git clone https://github.com/buddy-compiler/buddy-mlir.git
cd buddy-mlir
2.3 初始化子模块
接下来,初始化并更新子模块:
git submodule update --init
2.4 构建 LLVM/MLIR
进入项目目录并构建 LLVM/MLIR:
mkdir llvm/build
cd llvm/build
cmake -G Ninja ../llvm \
-DLLVM_ENABLE_PROJECTS="mlir;clang" \
-DLLVM_TARGETS_TO_BUILD="host;RISCV" \
-DLLVM_ENABLE_ASSERTIONS=ON \
-DCMAKE_BUILD_TYPE=RELEASE
ninja check-mlir check-clang
2.5 构建 Buddy-MLIR
构建 Buddy-MLIR 项目:
cd ../../
mkdir build
cd build
cmake -G Ninja ../ \
-DMLIR_DIR=$PWD/../llvm/build/lib/cmake/mlir \
-DLLVM_DIR=$PWD/../llvm/build/lib/cmake/llvm \
-DLLVM_ENABLE_ASSERTIONS=ON \
-DCMAKE_BUILD_TYPE=RELEASE
ninja
ninja check-buddy
3. 应用案例和最佳实践
3.1 图像处理
Buddy-MLIR 提供了一个 DIP(Digital Image Processing)方言,用于图像处理任务。以下是一个简单的图像处理示例:
from buddy_mlir import DIP
# 加载图像
image = DIP.load_image('input.png')
# 应用高斯模糊
blurred_image = DIP.gaussian_blur(image, kernel_size=5)
# 保存处理后的图像
DIP.save_image(blurred_image, 'output.png')
3.2 深度学习模型编译
Buddy-MLIR 还可以用于深度学习模型的编译和优化。以下是一个简单的模型编译示例:
from buddy_mlir import DL
# 定义一个简单的模型
model = DL.Sequential([
DL.Conv2D(32, (3, 3), activation='relu'),
DL.MaxPooling2D((2, 2)),
DL.Flatten(),
DL.Dense(10, activation='softmax')
])
# 编译模型
compiled_model = DL.compile(model, backend='buddy-mlir')
# 运行模型
output = compiled_model.run(input_data)
4. 典型生态项目
4.1 MLIR
MLIR 是 Buddy-MLIR 的基础,它提供了一个多层次的中间表示和编译器基础设施,支持可重用和可扩展的机制。
4.2 RISC-V
RISC-V 是一个开源的指令集架构,Buddy-MLIR 特别支持 RISC-V,尤其是其向量化扩展。
4.3 OpenCV
Buddy-MLIR 集成了 OpenCV,提供了强大的图像处理功能,适用于各种图像处理任务。
4.4 TensorFlow
Buddy-MLIR 可以与 TensorFlow 集成,用于深度学习模型的编译和优化。
通过这些生态项目的支持,Buddy-MLIR 能够提供一个全面的编译器解决方案,适用于多种领域和应用场景。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
189
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92