Buddy-MLIR 开源项目教程
2024-09-14 03:34:04作者:冯爽妲Honey
1. 项目介绍
Buddy-MLIR 是一个基于 MLIR(Multi-Level Intermediate Representation)的编译器框架,旨在从领域特定语言(DSL)到领域特定架构(DSA)的协同设计生态系统中提供支持。该项目的主要目标是简化从高级语言到特定硬件架构的编译过程,从而提高开发效率和性能优化。
Buddy-MLIR 的核心功能包括:
- DSL 前端支持:支持多种领域特定语言的编译。
- IR 级优化:提供丰富的中间表示优化技术。
- DSA 后端代码生成:生成针对特定硬件架构的优化代码。
- MLIR 开发工具:提供一系列工具来辅助 MLIR 的开发和调试。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的机器上已经安装了以下依赖:
- Git
- CMake
- Ninja
- Python 3
2.2 克隆项目
首先,克隆 Buddy-MLIR 项目到本地:
git clone https://github.com/buddy-compiler/buddy-mlir.git
cd buddy-mlir
2.3 初始化子模块
接下来,初始化并更新子模块:
git submodule update --init
2.4 构建 LLVM/MLIR
进入项目目录并构建 LLVM/MLIR:
mkdir llvm/build
cd llvm/build
cmake -G Ninja ../llvm \
-DLLVM_ENABLE_PROJECTS="mlir;clang" \
-DLLVM_TARGETS_TO_BUILD="host;RISCV" \
-DLLVM_ENABLE_ASSERTIONS=ON \
-DCMAKE_BUILD_TYPE=RELEASE
ninja check-mlir check-clang
2.5 构建 Buddy-MLIR
构建 Buddy-MLIR 项目:
cd ../../
mkdir build
cd build
cmake -G Ninja ../ \
-DMLIR_DIR=$PWD/../llvm/build/lib/cmake/mlir \
-DLLVM_DIR=$PWD/../llvm/build/lib/cmake/llvm \
-DLLVM_ENABLE_ASSERTIONS=ON \
-DCMAKE_BUILD_TYPE=RELEASE
ninja
ninja check-buddy
3. 应用案例和最佳实践
3.1 图像处理
Buddy-MLIR 提供了一个 DIP(Digital Image Processing)方言,用于图像处理任务。以下是一个简单的图像处理示例:
from buddy_mlir import DIP
# 加载图像
image = DIP.load_image('input.png')
# 应用高斯模糊
blurred_image = DIP.gaussian_blur(image, kernel_size=5)
# 保存处理后的图像
DIP.save_image(blurred_image, 'output.png')
3.2 深度学习模型编译
Buddy-MLIR 还可以用于深度学习模型的编译和优化。以下是一个简单的模型编译示例:
from buddy_mlir import DL
# 定义一个简单的模型
model = DL.Sequential([
DL.Conv2D(32, (3, 3), activation='relu'),
DL.MaxPooling2D((2, 2)),
DL.Flatten(),
DL.Dense(10, activation='softmax')
])
# 编译模型
compiled_model = DL.compile(model, backend='buddy-mlir')
# 运行模型
output = compiled_model.run(input_data)
4. 典型生态项目
4.1 MLIR
MLIR 是 Buddy-MLIR 的基础,它提供了一个多层次的中间表示和编译器基础设施,支持可重用和可扩展的机制。
4.2 RISC-V
RISC-V 是一个开源的指令集架构,Buddy-MLIR 特别支持 RISC-V,尤其是其向量化扩展。
4.3 OpenCV
Buddy-MLIR 集成了 OpenCV,提供了强大的图像处理功能,适用于各种图像处理任务。
4.4 TensorFlow
Buddy-MLIR 可以与 TensorFlow 集成,用于深度学习模型的编译和优化。
通过这些生态项目的支持,Buddy-MLIR 能够提供一个全面的编译器解决方案,适用于多种领域和应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137