liboqs项目中ML-KEM-1024算法的常量时间测试问题分析
背景介绍
在量子安全密码学领域,liboqs是一个重要的开源项目,它实现了多种后量子密码算法。其中ML-KEM(Module-Lattice-based Key Encapsulation Mechanism)是基于格的后量子密钥封装机制。在liboqs的最新版本测试中,发现ML-KEM-1024算法的常量时间测试出现了失败情况。
问题本质
常量时间测试是密码学实现中的关键安全要求,它确保算法执行时间不依赖于秘密数据,从而防止通过侧信道攻击泄露敏感信息。本次测试失败实际上是一个误报(false positive),而非真正的安全问题。
技术细节分析
问题出现在mlk_check_sk函数中,该函数专门处理密钥中的公开数据部分。根据密码学实现原则:
- 函数内部的分支逻辑是安全的,因为它仅处理公开数据
- 依赖于返回值的分支也是允许的
- 这些操作不会泄露任何秘密信息
测试失败的根本原因是mlkem-native代码库中的命名空间变更。在更新版本中,mlk_check_sk函数不再默认进行命名空间处理(因为它被声明为静态函数),导致原有的安全机制无法正确识别和过滤这个函数。
解决方案
项目维护者已经提交了修复方案,主要措施是更新测试机制以适配新的函数命名方式。这种解决方案简单有效,但同时也引发了更深层次的思考:如何建立更健壮的机制来处理这类情况。
深入探讨
mlkem-native代码库中已经明确对相关公开数据进行了"去分类"(declassification)处理,这表明开发者已经考虑了侧信道安全问题。这提出了一个有趣的技术问题:如何将这种去分类信息传递给liboqs的常量时间测试框架。
可能的改进方向包括:
- 扩展liboqs的去分类函数,使其可用于整个库而不仅限于测试代码
- 为mlkem-native创建适配层,类似于现有的RNG/哈希适配方案
- 开发更智能的测试框架,能够识别密码学代码中的安全边界
结论
本次事件展示了密码学实现和测试中的典型挑战。虽然问题本身已经得到解决,但它提醒我们密码学软件工程中需要考虑的深层次问题:如何在保持代码清晰性和安全性的同时,确保测试框架能够准确理解开发者的安全意图。对于密码学实现者来说,建立更完善的工具链和测试机制将是未来的重要发展方向。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C078
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00