liboqs项目中ML-KEM-1024算法的常量时间测试问题分析
背景介绍
在量子安全密码学领域,liboqs是一个重要的开源项目,它实现了多种后量子密码算法。其中ML-KEM(Module-Lattice-based Key Encapsulation Mechanism)是基于格的后量子密钥封装机制。在liboqs的最新版本测试中,发现ML-KEM-1024算法的常量时间测试出现了失败情况。
问题本质
常量时间测试是密码学实现中的关键安全要求,它确保算法执行时间不依赖于秘密数据,从而防止通过侧信道攻击泄露敏感信息。本次测试失败实际上是一个误报(false positive),而非真正的安全问题。
技术细节分析
问题出现在mlk_check_sk函数中,该函数专门处理密钥中的公开数据部分。根据密码学实现原则:
- 函数内部的分支逻辑是安全的,因为它仅处理公开数据
- 依赖于返回值的分支也是允许的
- 这些操作不会泄露任何秘密信息
测试失败的根本原因是mlkem-native代码库中的命名空间变更。在更新版本中,mlk_check_sk函数不再默认进行命名空间处理(因为它被声明为静态函数),导致原有的安全机制无法正确识别和过滤这个函数。
解决方案
项目维护者已经提交了修复方案,主要措施是更新测试机制以适配新的函数命名方式。这种解决方案简单有效,但同时也引发了更深层次的思考:如何建立更健壮的机制来处理这类情况。
深入探讨
mlkem-native代码库中已经明确对相关公开数据进行了"去分类"(declassification)处理,这表明开发者已经考虑了侧信道安全问题。这提出了一个有趣的技术问题:如何将这种去分类信息传递给liboqs的常量时间测试框架。
可能的改进方向包括:
- 扩展liboqs的去分类函数,使其可用于整个库而不仅限于测试代码
- 为mlkem-native创建适配层,类似于现有的RNG/哈希适配方案
- 开发更智能的测试框架,能够识别密码学代码中的安全边界
结论
本次事件展示了密码学实现和测试中的典型挑战。虽然问题本身已经得到解决,但它提醒我们密码学软件工程中需要考虑的深层次问题:如何在保持代码清晰性和安全性的同时,确保测试框架能够准确理解开发者的安全意图。对于密码学实现者来说,建立更完善的工具链和测试机制将是未来的重要发展方向。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00