liboqs项目中ML-KEM-1024算法的常量时间测试问题分析
背景介绍
在量子安全密码学领域,liboqs是一个重要的开源项目,它实现了多种后量子密码算法。其中ML-KEM(Module-Lattice-based Key Encapsulation Mechanism)是基于格的后量子密钥封装机制。在liboqs的最新版本测试中,发现ML-KEM-1024算法的常量时间测试出现了失败情况。
问题本质
常量时间测试是密码学实现中的关键安全要求,它确保算法执行时间不依赖于秘密数据,从而防止通过侧信道攻击泄露敏感信息。本次测试失败实际上是一个误报(false positive),而非真正的安全问题。
技术细节分析
问题出现在mlk_check_sk
函数中,该函数专门处理密钥中的公开数据部分。根据密码学实现原则:
- 函数内部的分支逻辑是安全的,因为它仅处理公开数据
- 依赖于返回值的分支也是允许的
- 这些操作不会泄露任何秘密信息
测试失败的根本原因是mlkem-native代码库中的命名空间变更。在更新版本中,mlk_check_sk
函数不再默认进行命名空间处理(因为它被声明为静态函数),导致原有的安全机制无法正确识别和过滤这个函数。
解决方案
项目维护者已经提交了修复方案,主要措施是更新测试机制以适配新的函数命名方式。这种解决方案简单有效,但同时也引发了更深层次的思考:如何建立更健壮的机制来处理这类情况。
深入探讨
mlkem-native代码库中已经明确对相关公开数据进行了"去分类"(declassification)处理,这表明开发者已经考虑了侧信道安全问题。这提出了一个有趣的技术问题:如何将这种去分类信息传递给liboqs的常量时间测试框架。
可能的改进方向包括:
- 扩展liboqs的去分类函数,使其可用于整个库而不仅限于测试代码
- 为mlkem-native创建适配层,类似于现有的RNG/哈希适配方案
- 开发更智能的测试框架,能够识别密码学代码中的安全边界
结论
本次事件展示了密码学实现和测试中的典型挑战。虽然问题本身已经得到解决,但它提醒我们密码学软件工程中需要考虑的深层次问题:如何在保持代码清晰性和安全性的同时,确保测试框架能够准确理解开发者的安全意图。对于密码学实现者来说,建立更完善的工具链和测试机制将是未来的重要发展方向。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~047CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









