liboqs项目中ML-KEM私钥种子格式的技术演进分析
在密码学领域,密钥管理一直是一个核心问题。近期,open-quantum-safe/liboqs项目社区就ML-KEM(后量子密码学标准候选算法之一)私钥的存储格式展开了深入讨论。本文将全面分析这一技术演进过程及其背后的密码学考量。
背景与问题起源
ML-KEM作为NIST后量子密码标准化项目的重要候选算法,其私钥传统上采用FIPS 203标准中定义的扩展格式存储。然而,密码学界逐渐形成共识:使用64字节种子形式(即ML-KEM.KeyGen_internal()的输入)存储私钥更为合理。这种形式不仅更紧凑,还能降低实现复杂度并提高安全性。
当前liboqs的实现仅支持扩展格式的私钥,这导致无法实现基于种子形式定义的安全协议。具体表现为OQS_KEM_ml_kem_XXX_keypair()方法生成扩展私钥,而OQS_KEM_ml_kem_XXX_decaps()方法也要求输入扩展私钥。
技术解决方案探讨
社区提出了几种可能的改进方案:
-
最小化修改方案:拆分出一个从种子生成扩展私钥的方法,保持现有API基本不变,但允许应用在生成全新密钥时自行填充随机种子。
-
并行API方案:创建一套新的算法标识符(如ML-KEM-XXX-seedonly),使用derand API进行密钥生成和解封装,同时保持封装操作与现有ML-KEM一致。
-
上游修改方案:推动上游实现(如pqcrystals)修改其私钥格式处理逻辑,从根本上解决问题。
实现细节分析
深入技术实现层面,pqcrystals_kyberXXX_ref_keypair_derand()函数中的coins参数实际上就是64字节的种子形式。这意味着底层实现已经支持所需功能,只需在liboqs层面进行适当封装。
对于解密操作,由于上游API需要扩展私钥作为输入,可以在解密时调用pqcrystals_kyberXXX_ref_keypair_derand()进行实时转换。这种方案虽然会增加少量运行时开销,但保持了API的简洁性。
项目架构考量
liboqs项目坚持两个核心设计原则:
- 算法独立性:所有算法在相同API下表现一致
- 不维护算法实现:所有核心密码代码由专业上游维护
这些原则对解决方案的选择产生了重要影响。社区更倾向于不破坏算法独立性的方案,同时避免直接修改上游代码。因此,创建独立的算法标识符成为较优选择。
未来发展方向
PQ Code Package项目正在讨论扩展上游API,计划支持包括种子形式私钥表示、扩展密钥处理和密钥验证等功能。这可能会成为liboqs未来更换上游实现的重要契机。
同时,社区也在思考如何平衡研究需求与标准化要求。作为研究平台,liboqs可能需要支持算法所有可能的变体;而作为生产系统,则可能需要严格遵循标准实现。
结论
ML-KEM私钥格式的演进反映了后量子密码学标准化过程中的典型挑战。liboqs社区通过谨慎的技术讨论,在保持项目核心原则的同时,为这一重要密码学组件的改进找到了可行路径。这一过程也展示了开源密码学项目如何协调学术研究、标准制定和工程实现之间的关系。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00