liboqs项目中ML-KEM私钥种子格式的技术演进分析
在密码学领域,密钥管理一直是一个核心问题。近期,open-quantum-safe/liboqs项目社区就ML-KEM(后量子密码学标准候选算法之一)私钥的存储格式展开了深入讨论。本文将全面分析这一技术演进过程及其背后的密码学考量。
背景与问题起源
ML-KEM作为NIST后量子密码标准化项目的重要候选算法,其私钥传统上采用FIPS 203标准中定义的扩展格式存储。然而,密码学界逐渐形成共识:使用64字节种子形式(即ML-KEM.KeyGen_internal()的输入)存储私钥更为合理。这种形式不仅更紧凑,还能降低实现复杂度并提高安全性。
当前liboqs的实现仅支持扩展格式的私钥,这导致无法实现基于种子形式定义的安全协议。具体表现为OQS_KEM_ml_kem_XXX_keypair()方法生成扩展私钥,而OQS_KEM_ml_kem_XXX_decaps()方法也要求输入扩展私钥。
技术解决方案探讨
社区提出了几种可能的改进方案:
-
最小化修改方案:拆分出一个从种子生成扩展私钥的方法,保持现有API基本不变,但允许应用在生成全新密钥时自行填充随机种子。
-
并行API方案:创建一套新的算法标识符(如ML-KEM-XXX-seedonly),使用derand API进行密钥生成和解封装,同时保持封装操作与现有ML-KEM一致。
-
上游修改方案:推动上游实现(如pqcrystals)修改其私钥格式处理逻辑,从根本上解决问题。
实现细节分析
深入技术实现层面,pqcrystals_kyberXXX_ref_keypair_derand()函数中的coins参数实际上就是64字节的种子形式。这意味着底层实现已经支持所需功能,只需在liboqs层面进行适当封装。
对于解密操作,由于上游API需要扩展私钥作为输入,可以在解密时调用pqcrystals_kyberXXX_ref_keypair_derand()进行实时转换。这种方案虽然会增加少量运行时开销,但保持了API的简洁性。
项目架构考量
liboqs项目坚持两个核心设计原则:
- 算法独立性:所有算法在相同API下表现一致
- 不维护算法实现:所有核心密码代码由专业上游维护
这些原则对解决方案的选择产生了重要影响。社区更倾向于不破坏算法独立性的方案,同时避免直接修改上游代码。因此,创建独立的算法标识符成为较优选择。
未来发展方向
PQ Code Package项目正在讨论扩展上游API,计划支持包括种子形式私钥表示、扩展密钥处理和密钥验证等功能。这可能会成为liboqs未来更换上游实现的重要契机。
同时,社区也在思考如何平衡研究需求与标准化要求。作为研究平台,liboqs可能需要支持算法所有可能的变体;而作为生产系统,则可能需要严格遵循标准实现。
结论
ML-KEM私钥格式的演进反映了后量子密码学标准化过程中的典型挑战。liboqs社区通过谨慎的技术讨论,在保持项目核心原则的同时,为这一重要密码学组件的改进找到了可行路径。这一过程也展示了开源密码学项目如何协调学术研究、标准制定和工程实现之间的关系。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









