Pathway项目中使用自定义嵌入模型和本地LLM的实践指南
Pathway作为一个开源LLM应用框架,提供了灵活的架构设计,允许开发者轻松集成自定义组件。本文将详细介绍如何在Pathway项目中替换默认的AI服务,使用本地部署的嵌入模型和大型语言模型(LLM)。
自定义嵌入模型集成
Pathway框架内置了基于Tantivy的高性能向量存储(pw Vector Store),其性能与FAISS相当,开箱即用无需额外配置。对于希望使用自定义嵌入模型的开发者,框架提供了简洁的集成方式:
-
模型准备:确保你的嵌入模型提供HTTP API接口,能够接收文本并返回向量表示
-
配置替换:通过Pathway提供的API,可以轻松将默认嵌入模型替换为你的本地服务。框架会处理后续的向量索引和检索过程
-
性能考量:内置的pw Vector Store已经优化了内存使用和查询性能,建议优先使用。如需使用外部向量库如FAISS,需要自行处理与Pathway的集成
本地LLM集成方案
Pathway通过LiteLLM包装器支持各种本地LLM的集成:
-
API兼容性:确保你的本地LLM服务提供兼容AI的API接口,或者能够通过简单的适配层转换
-
连接配置:在Pathway配置中指定你的LLM服务端点,框架会自动处理请求路由和响应解析
-
性能监控:集成后,可以利用Pathway的监控工具跟踪LLM的响应时间和资源使用情况
实施建议
对于大多数应用场景,建议采用以下架构:
- 使用Pathway内置的向量存储处理文档嵌入和检索
- 通过简单的HTTP接口连接自定义嵌入模型
- 利用LiteLLM包装器集成本地LLM服务
这种组合既能利用Pathway框架的优化性能,又能保持使用自有模型服务的灵活性。对于特殊需求,如必须使用特定向量数据库的情况,需要自行开发适配层。
Pathway的这种设计理念体现了"约定优于配置"的原则,在提供合理默认值的同时,不限制高级用户的自定义需求。开发者可以根据实际场景在便利性和灵活性之间找到平衡点。
通过上述方法,开发者可以充分利用Pathway框架的优势,同时保持对模型选择的完全控制,构建出既高效又符合特定需求的LLM应用系统。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00