DH3D:强大的大规模6自由度重定位深度分层3D描述符
2024-09-26 02:08:35作者:傅爽业Veleda
项目介绍
DH3D是由慕尼黑工业大学的Juan Du、Rui Wang和Daniel Cremers共同开发的一个开源项目,旨在解决大规模点云中的重定位问题。该项目首次将全局地点识别与局部6自由度(6DoF)姿态细化统一起来,通过设计一个Siamese网络,直接从原始3D点中学习3D局部特征检测和描述。DH3D不仅在全局点云检索和局部点云配准方面表现出色,还在无需微调的情况下展示了其对由视觉SLAM系统生成的点云配准的优越性能。
项目技术分析
DH3D的核心技术包括:
- Siamese网络:用于联合学习3D局部特征检测和描述。
- FlexConv和Squeeze-and-Excitation (SE):确保学习的局部描述符捕捉多层次的几何信息和通道间的关系。
- 无监督的3D关键点检测:通过预测局部描述符的判别性来实现。
- 全局描述符生成:通过有效的注意力机制直接聚合学习的局部描述符。
这些技术的结合使得DH3D能够在一次前向传递中推断出局部和全局3D描述符,从而在大规模点云重定位任务中表现出色。
项目及技术应用场景
DH3D适用于以下场景:
- 大规模点云重定位:在需要高精度6自由度姿态估计的场景中,如自动驾驶、机器人导航等。
- 视觉SLAM系统:作为后端优化的一部分,提升系统的鲁棒性和精度。
- 点云配准:在无需预先训练的情况下,能够处理由不同传感器生成的点云数据。
项目特点
DH3D的主要特点包括:
- 统一的全局和局部描述符:通过单一网络实现全局和局部描述符的生成,简化了模型架构。
- 多层次几何信息捕捉:利用FlexConv和SE模块,确保描述符能够捕捉到丰富的几何信息。
- 无监督的关键点检测:通过预测描述符的判别性来检测关键点,减少了标注数据的依赖。
- 强大的泛化能力:在无需微调的情况下,能够处理由不同系统生成的点云数据,展示了其强大的泛化能力。
DH3D已经在多个基准测试中展示了其竞争力,证明了其在实际应用中的潜力。如果你正在寻找一个强大且灵活的点云重定位解决方案,DH3D无疑是一个值得尝试的开源项目。
如何开始
- 环境配置:建议使用Ubuntu 16.04或18.04,并安装CUDA 10.1或9.2以及TensorFlow 1.9-1.11。其他依赖项包括scipy、scikit-learn、open3d、tabulate和tensorpack。
- 编译说明:按照README中的步骤编译TensorFlow和相关操作符。
- 数据集:项目主要使用Oxford RobotCar数据集进行训练和测试,同时也支持ETH Laser Registration数据集和由Stereo DSO生成的点云数据。
- 训练与测试:提供了详细的训练和测试脚本,用户可以根据需要进行配置和运行。
通过这些步骤,你可以快速上手并开始使用DH3D进行点云重定位任务。
结语
DH3D作为一个前沿的点云重定位解决方案,不仅在技术上具有创新性,而且在实际应用中也展示了其强大的性能。无论你是研究者还是开发者,DH3D都值得你深入探索和使用。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869