DH3D:强大的大规模6自由度重定位深度分层3D描述符
2024-09-26 23:32:49作者:傅爽业Veleda
项目介绍
DH3D是由慕尼黑工业大学的Juan Du、Rui Wang和Daniel Cremers共同开发的一个开源项目,旨在解决大规模点云中的重定位问题。该项目首次将全局地点识别与局部6自由度(6DoF)姿态细化统一起来,通过设计一个Siamese网络,直接从原始3D点中学习3D局部特征检测和描述。DH3D不仅在全局点云检索和局部点云配准方面表现出色,还在无需微调的情况下展示了其对由视觉SLAM系统生成的点云配准的优越性能。
项目技术分析
DH3D的核心技术包括:
- Siamese网络:用于联合学习3D局部特征检测和描述。
- FlexConv和Squeeze-and-Excitation (SE):确保学习的局部描述符捕捉多层次的几何信息和通道间的关系。
- 无监督的3D关键点检测:通过预测局部描述符的判别性来实现。
- 全局描述符生成:通过有效的注意力机制直接聚合学习的局部描述符。
这些技术的结合使得DH3D能够在一次前向传递中推断出局部和全局3D描述符,从而在大规模点云重定位任务中表现出色。
项目及技术应用场景
DH3D适用于以下场景:
- 大规模点云重定位:在需要高精度6自由度姿态估计的场景中,如自动驾驶、机器人导航等。
- 视觉SLAM系统:作为后端优化的一部分,提升系统的鲁棒性和精度。
- 点云配准:在无需预先训练的情况下,能够处理由不同传感器生成的点云数据。
项目特点
DH3D的主要特点包括:
- 统一的全局和局部描述符:通过单一网络实现全局和局部描述符的生成,简化了模型架构。
- 多层次几何信息捕捉:利用FlexConv和SE模块,确保描述符能够捕捉到丰富的几何信息。
- 无监督的关键点检测:通过预测描述符的判别性来检测关键点,减少了标注数据的依赖。
- 强大的泛化能力:在无需微调的情况下,能够处理由不同系统生成的点云数据,展示了其强大的泛化能力。
DH3D已经在多个基准测试中展示了其竞争力,证明了其在实际应用中的潜力。如果你正在寻找一个强大且灵活的点云重定位解决方案,DH3D无疑是一个值得尝试的开源项目。
如何开始
- 环境配置:建议使用Ubuntu 16.04或18.04,并安装CUDA 10.1或9.2以及TensorFlow 1.9-1.11。其他依赖项包括scipy、scikit-learn、open3d、tabulate和tensorpack。
- 编译说明:按照README中的步骤编译TensorFlow和相关操作符。
- 数据集:项目主要使用Oxford RobotCar数据集进行训练和测试,同时也支持ETH Laser Registration数据集和由Stereo DSO生成的点云数据。
- 训练与测试:提供了详细的训练和测试脚本,用户可以根据需要进行配置和运行。
通过这些步骤,你可以快速上手并开始使用DH3D进行点云重定位任务。
结语
DH3D作为一个前沿的点云重定位解决方案,不仅在技术上具有创新性,而且在实际应用中也展示了其强大的性能。无论你是研究者还是开发者,DH3D都值得你深入探索和使用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19