BIRADS_classifier 项目使用教程
2024-09-18 02:36:14作者:平淮齐Percy
1. 项目介绍
BIRADS_classifier 是一个用于 BI-RADS 分类的高分辨率乳腺癌筛查模型。该项目基于多视角深度卷积神经网络,旨在通过分析标准筛查乳腺X光片(包括四个视角:L-CC, L-MLO, R-CC, R-MLO)来预测乳腺癌的风险等级。模型实现了在 TensorFlow 和 PyTorch 中的实现,并提供了预训练模型供用户直接使用。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的环境中已经安装了以下依赖:
- Python 3.6
- TensorFlow 1.5.0 或 PyTorch 0.4.0
- NumPy 1.14.3
- SciPy 1.0.0
- Pillow 5.1.0
2.2 克隆项目
首先,克隆项目到本地:
git clone https://github.com/nyukat/BIRADS_classifier.git
cd BIRADS_classifier
2.3 运行示例代码
项目提供了 TensorFlow 和 PyTorch 版本的示例代码,您可以根据需要选择其中一个运行。
使用 TensorFlow
python birads_prediction_tf.py
使用 PyTorch
python birads_prediction_torch.py
运行上述命令后,模型将加载预训练权重,并对提供的示例图像进行预测,输出 BI-RADS 分类的概率。
3. 应用案例和最佳实践
3.1 应用案例
BIRADS_classifier 可以应用于乳腺癌筛查中心,帮助医生快速评估患者的乳腺X光片,提供初步的 BI-RADS 分类建议。通过自动化这一过程,可以提高筛查效率,减少人为误差。
3.2 最佳实践
- 数据预处理:确保输入图像的大小为 2600x2000 像素,并且已经按照四个视角(L-CC, L-MLO, R-CC, R-MLO)进行裁剪。
- 模型选择:根据您的需求选择 TensorFlow 或 PyTorch 版本,两者在性能和功能上基本一致。
- 模型优化:如果需要进一步优化模型,可以考虑使用更大的数据集进行重新训练,或者调整模型的超参数。
4. 典型生态项目
- TensorFlow:BIRADS_classifier 的 TensorFlow 实现依赖于 TensorFlow 框架,TensorFlow 是一个广泛使用的深度学习框架,提供了丰富的工具和库。
- PyTorch:PyTorch 版本的实现依赖于 PyTorch 框架,PyTorch 以其动态计算图和易用性受到广泛欢迎。
- NumPy 和 SciPy:这些库用于数据处理和科学计算,是 Python 生态中不可或缺的部分。
- Pillow:用于图像处理的库,提供了加载和处理图像的功能。
通过这些生态项目的支持,BIRADS_classifier 能够高效地进行乳腺癌筛查的 BI-RADS 分类任务。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
200
81
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
274
311
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
693
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
107
120