Valibot 项目中自定义验证器的最佳实践
2025-05-30 06:58:29作者:姚月梅Lane
Valibot 是一个用于数据验证的 TypeScript 库,随着其 API 的演进,开发者需要了解如何高效地创建自定义验证器。本文将深入探讨在 Valibot 中创建自定义验证器的几种方法,并分析各自的优缺点。
自定义验证器的基本模式
在 Valibot 中,创建自定义验证器通常有两种主要方式:
- 简单函数形式:适用于不需要严格类型检查的场景
- 类型安全形式:提供完整的类型安全,但需要更多样板代码
简单函数实现
对于不需要严格类型检查的场景,可以采用简洁的函数形式:
function nonEmpty(message = "Non-empty value required.") {
return minLength(1, message);
}
这种方式的优点是代码简洁,但缺点是类型信息不够完整,IDE 可能无法提供完善的类型提示。
类型安全实现
如果需要完整的类型安全,可以采用以下形式:
function nonEmpty<TInput extends LengthInput>(
message: string = 'Non-empty value required.'
): MinLengthAction<TInput, 1, string> {
return minLength(1, message);
}
这种方式提供了完整的类型信息,但需要更多的样板代码。
高级类型模式
对于需要更精确类型控制的场景,可以使用以下模式:
function nonEmpty<
TInput extends LengthInput,
const TMessage extends ErrorMessage<MinLengthIssue<TInput, 1>>,
>(
message: TMessage = 'Non-empty value required.' as TMessage
): MinLengthAction<TInput, 1, TMessage> {
return minLength(1, message);
}
这种模式:
- 保留了输入类型的泛型参数
- 精确控制了错误消息的类型
- 确保了返回类型与 minLength 操作完全匹配
组合验证器的实现
对于组合多个验证器的场景,如创建一个既检查数字类型又检查整数的验证器:
function integerNumber<TMessage extends ErrorMessage<NumberIssue>>(message?: TMessage) {
return pipe(number(message), integer());
}
Valibot 核心团队指出,目前还没有完美的方法来完全代理原始验证器的类型签名(包括处理 undefined 消息的重载),因此在实际应用中需要根据具体需求权衡类型精确性和代码简洁性。
实践建议
- 评估需求:如果项目对类型安全要求不高,简单函数形式可能更合适
- 类型导出:Valibot 已导出常用输入类型(ContentInput、LengthInput 等),可直接使用
- 权衡取舍:在类型安全和代码简洁性之间找到平衡点
- 内置验证器:优先使用 Valibot 内置的验证器(如非空检查现已内置)
通过理解这些模式,开发者可以在 Valibot 项目中更高效地创建和维护自定义验证器,同时根据项目需求选择最适合的实现方式。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137