TensorRT-Model-Optimizer 0.29.0版本发布:量化优化能力全面升级
TensorRT-Model-Optimizer(简称ModelOpt)是NVIDIA推出的一个开源模型优化工具包,专注于为深度学习模型提供高效的量化、剪枝等优化能力,帮助开发者将模型部署到NVIDIA GPU上时获得最佳性能。最新发布的0.29.0版本带来了多项重要更新,特别是在量化技术方面有显著增强。
量化技术重大更新
新型量化精度支持
0.29.0版本新增了对INT8真实量化的支持,这是继FP8之后又一个重要的量化精度选项。INT8量化能够在保持较高模型精度的同时,显著减少模型大小并提升推理速度。特别值得注意的是,新版本还加入了FP8 GEMM的逐张量量化内核,开发者可以在PTQ(训练后量化)后使用mtq.compress
API来加速量化模型的评估过程。
量化算法架构改进
SequentialQuantizer组件在本版本中进行了重构,提升了实现质量和可维护性,同时保持了原有功能。这一改进使得量化流程更加稳定可靠。此外,新版本还支持添加自定义量化校准算法,开发者可以根据特定需求实现自己的校准策略,这为特殊场景下的模型优化提供了更大的灵活性。
大语言模型支持增强
TensorRT-LLM 0.18集成
针对大语言模型场景,0.29.0版本将LLM示例升级到了TensorRT-LLM 0.18版本,并新增了对Gemma-3和Llama-Nemotron模型的支持。这些更新使得开发者能够利用最新的优化技术来处理更大、更复杂的语言模型。
EAGLE3训练支持
对于使用Megatron-LM框架的开发者,新版本增加了对EAGLE3(LlamaForCausalLMEagle3)的训练支持,并提供了统一的ModelOpt检查点导出功能。这一特性简化了大模型训练和优化的流程。
ONNX量化功能扩展
输入形状管理优化
ONNX量化功能现在支持通过--override_shapes
标志来覆盖模型的输入形状,而--calibration_shapes
则专门用于校准过程的输入形状。这种分离使得形状管理更加清晰和灵活。
UNet模型支持与性能优化
新版本增加了对UNet模型的ONNX量化支持,这对于计算机视觉领域的开发者尤为重要。同时,默认启用了concat_elimination和冗余Cast消除等优化通道,这些改进可以显著提升量化后ONNX模型的性能。
分布式训练支持增强
DynamicModule组件新增了parallel_state属性,用于支持数据并行和张量并行等分布式并行策略。这一改进使得ModelOpt能够更好地适应大规模分布式训练场景。
未来展望
随着0.29.0版本的发布,TensorRT-Model-Optimizer在量化技术方面又向前迈进了一大步。从新精度支持到算法架构改进,从大模型优化到分布式训练增强,这些更新共同构成了一个更加强大、灵活的模型优化工具包。值得注意的是,该版本已开始逐步淘汰对torch<2.4版本的支持,开发者应提前做好升级准备。
对于需要在NVIDIA GPU上部署深度学习模型的开发者来说,TensorRT-Model-Optimizer 0.29.0提供了更加全面的优化选项和更高效的执行性能,值得深入研究和采用。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









