Apache ECharts 中多堆叠名称功能的深度解析
背景介绍
Apache ECharts 作为一款强大的数据可视化库,在图表堆叠功能方面一直有着广泛的应用。当前版本中,通过 series-line.stack 和 series-bar.stack 属性可以实现数据系列的堆叠展示,其中 stack 属性接受字符串值,相同 stack 名称的系列会被堆叠在一起。
现有堆叠机制的局限性
现有堆叠机制存在一个明显的限制:当需要多个系列基于同一个基准系列进行堆叠,但这些系列之间又不需要相互堆叠时,当前的单一堆叠名称机制无法满足需求。
举例来说,假设有三个数据系列 A、B 和 C:
- 希望 B 堆叠在 A 上
- 同时 C 也堆叠在 A 上
- 但不希望 B 和 C 之间相互堆叠
当前的单一堆叠名称机制无法实现这种灵活的堆叠关系,因为一旦将三个系列都设置为相同的堆叠名称,它们就会全部堆叠在一起。
技术实现方案探讨
现有解决方案的不足
目前开发者常用的解决方案是复制基准系列(如上述例子中的系列 A),然后分别与其他系列进行堆叠。这种方法虽然能达到视觉效果,但存在以下问题:
- 工具提示中会显示重复的基准系列数据
- 数据处理逻辑变得复杂
- 可能引发其他副作用,如系列交互时的数据一致性问题
提出的改进方案
新的 API 设计建议允许 stack 属性不仅接受字符串,还可以接受字符串数组。这种设计可以实现更灵活的堆叠关系:
seriesA.stack = ["ab", "ac"] // A 同时属于 ab 和 ac 两个堆叠组
seriesB.stack = "ab" // B 堆叠在 A 上(通过 ab 组)
seriesC.stack = "ac" // C 堆叠在 A 上(通过 ac 组)
这种设计保持了向后兼容性(仍然支持字符串值),同时提供了更强大的堆叠控制能力。
实际应用案例分析
在光伏发电系统监控场景中,这种多堆叠名称功能特别有用。例如需要展示:
- 光伏发电量(produced)
- 电池充电量(charged)
- 直接消耗电量(directlyConsumed)
- 总消耗量(consumed)
- 电池放电量(discharged)
理想的可视化效果是:
- charged 和 directlyConsumed 堆叠在 produced 上
- discharged 和 directlyConsumed 堆叠在 consumed 上
- 但 charged 和 discharged 不相互堆叠
当前的单一堆叠名称机制无法实现这种精确的堆叠关系,而多堆叠名称功能可以完美解决这个问题。
技术实现考量
实现多堆叠名称功能需要考虑以下技术细节:
- 堆叠计算逻辑:需要重新设计堆叠值的计算算法,处理一个系列属于多个堆叠组的情况
- 交互一致性:确保在缩放、提示框等交互场景下,数据的展示保持一致
- 性能优化:避免因复杂的堆叠关系导致性能下降
- API 设计:保持 API 的简洁性和一致性,便于开发者理解和使用
总结与展望
多堆叠名称功能将为 Apache ECharts 带来更强大的数据可视化能力,特别是在需要复杂堆叠关系的业务场景中。这一改进不仅解决了现有机制的局限性,还为更丰富的数据展示方式打开了大门。
对于开发者而言,这一功能将减少为实现特定堆叠效果而不得不采用的各种变通方案,使代码更加简洁、可维护性更高。期待在未来的 ECharts 版本中看到这一功能的实现,为数据可视化带来更多可能性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00