推荐开源项目:Neural Body Fitting
2024-05-24 02:35:24作者:宣利权Counsellor

项目介绍
Neural Body Fitting 是一个基于深度学习和模型驱动的开源项目,用于人体姿态和形状估计。通过结合先进的神经网络技术和SMPL(Statistical Model of Human Meshes)模型,该工具能精确地从单个二维图像中恢复三维人体形态。
该项目不仅提供了演示代码,还包含了训练部分的内容(即将发布),使得研究者和开发者可以轻松进行人体建模和姿态估计的实验。其优秀的表现力体现在对成功和失败案例的处理上,为相关领域的研究提供了强大的支持。
项目技术分析
Neural Body Fitting 使用了tensorflow-gpu作为后端,实现了一套高效的端到端解决方案。它包括以下核心组成部分:
- 深度学习模型:用于初步预测人体段落并进行后续拟合。
- UP Toolbox:一个强大的辅助工具箱,用于处理输入数据和模型参数。
- SMPL模型:提供了一个统计模型,用于表示多样化的人体形状和姿势。
- Mesh Renderer:实时渲染系统,帮助评估模型在图像中的表现。
项目采用递归克隆方法获取所有依赖项,并通过pip安装TensorFlow和其他必需库,确保环境一致性。
项目及技术应用场景
- 虚拟现实与增强现实:为VR/AR体验创建逼真的人体模型,提升用户体验。
- 动作捕捉与动画:在游戏开发和电影制作中,快速准确地重建人物动作和形态。
- 运动分析与生物力学研究:通过解析复杂的运动模式,助力科学研究。
- 时尚与健身行业:个性化定制服装,或监测运动员的动作技巧。
项目特点
- 深度集成:将深度学习模型与SMPL模型相结合,实现高效的人体重建。
- 易用性:提供详细的设置指南和示例,易于理解与部署。
- 兼容性:支持GPU加速,利用
tensorflow-gpu进行高性能计算。 - 灵活性:可扩展性强,适用于多种场景的适应性改造。
- 学术价值:相关研究成果已在国际会议3DV上发表,具有很高的学术参考价值。
如果您的工作或研究涉及到人体建模或姿态估计,我们强烈推荐您尝试这个项目。如果您在使用过程中有任何问题,可以查看项目文档或者直接联系作者。一起探索深度学习与人体建模的无限可能吧!
引用本项目时,请记得提及以下论文:
@inproceedings {omran2018nbf,
title = {Neural Body Fitting: Unifying Deep Learning and Model-Based Human Pose and Shape Estimation},
journal = {International Conference on 3D Vision (3DV)},
year = {2018},
author = {Omran, Mohamed and Lassner, Christoph and Pons-Moll, Gerard and Gehler, Peter V. and Schiele, Bernt}
address = {Verona, Italy},
}
感谢Generating People项目和Unite the People数据集为本项目提供的基础和支持。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
218
88
暂无简介
Dart
720
174
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
334
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
435
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19