Counter-fitting 项目使用教程
2024-09-28 12:46:46作者:谭伦延
1. 项目目录结构及介绍
counter-fitting/
├── linguistic_constraints/
│ ├── vocabulary.txt
│ ├── synonymy_constraints.txt
│ ├── antonymy_constraints.txt
│ └── ...
├── results/
│ ├── counter_fitted_vectors.txt
│ ├── simlex_ranking.txt
│ └── ...
├── word_vectors/
│ ├── glove.txt
│ ├── paragram_vectors.txt
│ └── ...
├── .gitignore
├── LICENSE.txt
├── README.md
├── counterfitting.py
└── experiment_parameters.cfg
目录结构介绍
- linguistic_constraints/: 包含词汇约束文件,如同义词和反义词约束。
- results/: 包含实验结果文件,如调整后的词向量和SimLex-999数据集的排名。
- word_vectors/: 包含初始词向量文件,如GloVe和Paragram向量。
- .gitignore: Git忽略文件。
- LICENSE.txt: 项目许可证文件。
- README.md: 项目说明文件。
- counterfitting.py: 项目主启动文件。
- experiment_parameters.cfg: 项目配置文件。
2. 项目启动文件介绍
counterfitting.py
这是项目的主启动文件,用于加载词向量并根据提供的语言约束进行调整。
主要功能
- 读取配置文件中的参数。
- 加载初始词向量。
- 根据语言约束调整词向量。
- 将调整后的词向量输出到
results/
目录。
使用方法
python counterfitting.py experiment_parameters.cfg
3. 项目配置文件介绍
experiment_parameters.cfg
这是项目的配置文件,用于指定实验参数和路径。
配置项
- initial_word_vectors: 初始词向量的路径,默认为
word_vectors/glove.txt
。 - vocabulary: 使用的词汇表路径,默认为
linguistic_constraints/vocabulary.txt
。 - synonymy_constraints: 同义词约束文件路径。
- antonymy_constraints: 反义词约束文件路径。
- dialogue_ontology: 对话领域本体的路径(可选)。
- hyperparameters: 调整过程的超参数。
示例配置
initial_word_vectors = word_vectors/glove.txt
vocabulary = linguistic_constraints/vocabulary.txt
synonymy_constraints = linguistic_constraints/synonymy_constraints.txt
antonymy_constraints = linguistic_constraints/antonymy_constraints.txt
dialogue_ontology = linguistic_constraints/dstc2.ontology
hyperparameters = ...
通过以上配置,您可以自定义实验的输入和输出路径,以及调整过程的参数。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-424B-A47B-Paddle
ERNIE-4.5-VL-424B-A47B 是百度推出的多模态MoE大模型,支持文本与视觉理解,总参数量424B,激活参数量47B。基于异构混合专家架构,融合跨模态预训练与高效推理优化,具备强大的图文生成、推理和问答能力。适用于复杂多模态任务场景00pangu-pro-moe
盘古 Pro MoE (72B-A16B):昇腾原生的分组混合专家模型016kornia
🐍 空间人工智能的几何计算机视觉库Python00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。00
热门内容推荐
1 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 2 freeCodeCamp博客页面工作坊中的断言方法优化建议3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp论坛排行榜项目中的错误日志规范要求5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp英语课程填空题提示缺失问题分析10 freeCodeCamp Cafe Menu项目中link元素的void特性解析
最新内容推荐
Far2l项目在Wayland环境下的输入处理优化方案 QuTiP项目中实现位移Drude-Lorentz浴的HEOM求解方法 PrimeFaces中SelectOneRadio组件点击区域优化实践 Calva扩展对Vim运动命令的影响分析与解决方案 Stryker.NET 项目中处理源码式 NuGet 包的特殊挑战 Turms即时通讯系统中系统消息持久化机制解析 rest.nvim中缓冲区局部键绑定的优化实践 ESP-ADF中PWM音频流播放完成时的数据刷新问题分析 far2l项目中Ctrl+Shift+方向键失效问题的解决方案 React-Codemirror 项目中 exports 未定义错误分析与解决方案
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
14

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
295
929

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
489
393

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
356
318

React Native鸿蒙化仓库
C++
111
195

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
367
37

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
579
41

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
982
0

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
689
86

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
51
52