RF-DETR项目中如何指定GPU设备运行模型
2025-07-06 19:06:15作者:裘旻烁
多GPU环境下的设备选择问题
在深度学习模型训练和推理过程中,当服务器配备多块GPU时,我们经常需要精确控制模型运行在哪块GPU设备上。RF-DETR作为基于PyTorch的目标检测模型,同样面临着这样的需求场景。
CUDA_VISIBLE_DEVICES环境变量方案
最直接有效的方法是通过设置CUDA_VISIBLE_DEVICES环境变量来控制PyTorch可见的GPU设备。这种方法不仅适用于RF-DETR项目,也是PyTorch生态中的标准做法。
具体实现方式
-
Linux/MacOS系统: 在运行Python脚本前,通过终端设置环境变量:
CUDA_VISIBLE_DEVICES=0 python your_script.py # 只使用第0号GPU CUDA_VISIBLE_DEVICES=1,2 python your_script.py # 使用第1和第2号GPU
-
Windows系统: 在命令提示符中:
set CUDA_VISIBLE_DEVICES=0 && python your_script.py
-
Python代码中设置: 也可以在Python脚本中直接设置:
import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 指定使用第0号GPU
多模型多GPU分配策略
对于需要将不同模型分配到不同GPU的场景,可以采用以下方法:
-
环境变量法: 通过子进程分别启动不同模型,为每个进程设置不同的CUDA_VISIBLE_DEVICES值。
-
PyTorch直接指定法: 在模型加载到设备时明确指定:
device = torch.device("cuda:1") # 显式使用第1号GPU model.to(device)
注意事项
-
GPU编号从0开始,nvidia-smi命令显示的GPU顺序可能与实际编号一致。
-
当使用CUDA_VISIBLE_DEVICES时,PyTorch中看到的GPU编号会重新从0开始排列。
-
在多进程环境下,需要确保不同进程不会竞争同一块GPU资源。
-
建议在代码开始时检查GPU是否可用:
import torch assert torch.cuda.is_available(), "CUDA不可用"
通过合理利用这些GPU控制方法,可以充分发挥RF-DETR等深度学习模型在多GPU环境下的性能优势,实现资源的优化配置。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58