RF-DETR项目中如何指定GPU设备运行模型
2025-07-06 23:08:33作者:裘旻烁
多GPU环境下的设备选择问题
在深度学习模型训练和推理过程中,当服务器配备多块GPU时,我们经常需要精确控制模型运行在哪块GPU设备上。RF-DETR作为基于PyTorch的目标检测模型,同样面临着这样的需求场景。
CUDA_VISIBLE_DEVICES环境变量方案
最直接有效的方法是通过设置CUDA_VISIBLE_DEVICES环境变量来控制PyTorch可见的GPU设备。这种方法不仅适用于RF-DETR项目,也是PyTorch生态中的标准做法。
具体实现方式
-
Linux/MacOS系统: 在运行Python脚本前,通过终端设置环境变量:
CUDA_VISIBLE_DEVICES=0 python your_script.py # 只使用第0号GPU CUDA_VISIBLE_DEVICES=1,2 python your_script.py # 使用第1和第2号GPU -
Windows系统: 在命令提示符中:
set CUDA_VISIBLE_DEVICES=0 && python your_script.py -
Python代码中设置: 也可以在Python脚本中直接设置:
import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 指定使用第0号GPU
多模型多GPU分配策略
对于需要将不同模型分配到不同GPU的场景,可以采用以下方法:
-
环境变量法: 通过子进程分别启动不同模型,为每个进程设置不同的CUDA_VISIBLE_DEVICES值。
-
PyTorch直接指定法: 在模型加载到设备时明确指定:
device = torch.device("cuda:1") # 显式使用第1号GPU model.to(device)
注意事项
-
GPU编号从0开始,nvidia-smi命令显示的GPU顺序可能与实际编号一致。
-
当使用CUDA_VISIBLE_DEVICES时,PyTorch中看到的GPU编号会重新从0开始排列。
-
在多进程环境下,需要确保不同进程不会竞争同一块GPU资源。
-
建议在代码开始时检查GPU是否可用:
import torch assert torch.cuda.is_available(), "CUDA不可用"
通过合理利用这些GPU控制方法,可以充分发挥RF-DETR等深度学习模型在多GPU环境下的性能优势,实现资源的优化配置。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
225
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868