RF-DETR项目中如何指定GPU设备运行模型
2025-07-06 03:39:03作者:裘旻烁
多GPU环境下的设备选择问题
在深度学习模型训练和推理过程中,当服务器配备多块GPU时,我们经常需要精确控制模型运行在哪块GPU设备上。RF-DETR作为基于PyTorch的目标检测模型,同样面临着这样的需求场景。
CUDA_VISIBLE_DEVICES环境变量方案
最直接有效的方法是通过设置CUDA_VISIBLE_DEVICES环境变量来控制PyTorch可见的GPU设备。这种方法不仅适用于RF-DETR项目,也是PyTorch生态中的标准做法。
具体实现方式
-
Linux/MacOS系统: 在运行Python脚本前,通过终端设置环境变量:
CUDA_VISIBLE_DEVICES=0 python your_script.py # 只使用第0号GPU CUDA_VISIBLE_DEVICES=1,2 python your_script.py # 使用第1和第2号GPU
-
Windows系统: 在命令提示符中:
set CUDA_VISIBLE_DEVICES=0 && python your_script.py
-
Python代码中设置: 也可以在Python脚本中直接设置:
import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 指定使用第0号GPU
多模型多GPU分配策略
对于需要将不同模型分配到不同GPU的场景,可以采用以下方法:
-
环境变量法: 通过子进程分别启动不同模型,为每个进程设置不同的CUDA_VISIBLE_DEVICES值。
-
PyTorch直接指定法: 在模型加载到设备时明确指定:
device = torch.device("cuda:1") # 显式使用第1号GPU model.to(device)
注意事项
-
GPU编号从0开始,nvidia-smi命令显示的GPU顺序可能与实际编号一致。
-
当使用CUDA_VISIBLE_DEVICES时,PyTorch中看到的GPU编号会重新从0开始排列。
-
在多进程环境下,需要确保不同进程不会竞争同一块GPU资源。
-
建议在代码开始时检查GPU是否可用:
import torch assert torch.cuda.is_available(), "CUDA不可用"
通过合理利用这些GPU控制方法,可以充分发挥RF-DETR等深度学习模型在多GPU环境下的性能优势,实现资源的优化配置。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
198
279

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
535
62

Ascend Extension for PyTorch
Python
50
81

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
556

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1 K
397

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
385
19

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191