优化Ollama Docker镜像体积的技术实践
2025-04-28 17:53:14作者:裴锟轩Denise
背景介绍
Ollama是一个流行的开源项目,用于运行和管理大型语言模型。在实际部署中,用户经常需要构建自定义的Docker镜像来满足特定需求。本文探讨如何优化Ollama Docker镜像的体积,使其从原始大小缩减到1GB左右。
镜像体积分析
标准的Ollama Docker镜像体积较大,主要原因是包含了多个版本的CUDA库。通过分析发现:
- CUDA v11库占用约1.15GB
- CUDA v12库占用约2.03GB
- 核心库文件体积很小,仅几MB
优化方案
方案一:选择性包含CUDA版本
通过多阶段构建,可以只保留必要的CUDA版本。例如,如果只需要CUDA v11,可以这样构建:
FROM ollama/ollama as base
FROM ubuntu:20.04
RUN apt-get update \
&& apt-get install -y ca-certificates \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
COPY --from=base /bin /usr/bin
COPY --from=base /lib/ollama/*.so /usr/lib/ollama/
COPY --from=base /lib/ollama/cuda_v11 /usr/lib/ollama/cuda_v11
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_VISIBLE_DEVICES=all
ENV OLLAMA_HOST=0.0.0.0:11434
EXPOSE 11434
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]
这种方案可以将镜像体积从3.3GB缩减到约1.34GB。
方案二:完全移除CUDA支持
如果不需要GPU加速,可以完全移除CUDA库,仅保留CPU支持的核心库文件。这将进一步减小镜像体积,但会牺牲GPU加速性能。
性能权衡
需要注意的是,精简CUDA库会影响模型推理性能:
- 移除CUDA v12会限制某些新特性的使用
- 完全移除CUDA支持将无法使用GPU加速
- 移除特定优化内核(如flash attention)会降低推理速度
企业环境适配
在企业环境中,可能还需要考虑:
- 添加内部CA证书以解决代理问题
- 预加载常用模型到镜像中
- 配置适当的环境变量
总结
通过选择性包含CUDA版本,可以在保持核心功能的同时显著减小Ollama Docker镜像体积。开发者应根据实际需求选择适当的优化方案,平衡体积、功能和性能之间的关系。对于大多数场景,保留单一CUDA版本是一个合理的折中方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
447
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
451
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705