优化Ollama Docker镜像体积的技术实践
2025-04-26 06:19:18作者:邓越浪Henry
背景介绍
Ollama是一个流行的开源项目,用于运行和管理大型语言模型。在实际部署中,用户经常需要构建自定义的Docker镜像来满足特定需求。本文探讨如何优化Ollama的Docker镜像体积,使其从原始大小缩减到1GB左右。
镜像体积分析
原始Ollama镜像的主要体积来源是CUDA库文件。通过分析发现:
- 总镜像大小约为3.3GB
- CUDA v11库占用1.15GB
- CUDA v12库占用2.03GB
- 核心库文件仅占用几MB
优化方案
方案一:选择性保留CUDA版本
通过多阶段构建,我们可以选择只保留必要的CUDA版本。例如,如果只需要CUDA v11,可以排除v12的库文件:
FROM ollama/ollama as base
FROM ubuntu:20.04
RUN apt-get update \
&& apt-get install -y ca-certificates \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
COPY --from=base /bin /usr/bin
COPY --from=base /lib/ollama/*.so /usr/lib/ollama/
COPY --from=base /lib/ollama/cuda_v11 /usr/lib/ollama/cuda_v11
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_VISIBLE_DEVICES=all
ENV OLLAMA_HOST=0.0.0.0:11434
EXPOSE 11434
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]
这种方案可以将镜像体积从3.3GB缩减到约1.34GB。
方案二:进一步精简
如果需要更小的体积,可以考虑:
- 使用更轻量的基础镜像(如Alpine Linux)
- 仅包含必要的CUDA组件
- 移除调试符号和不必要的文档
自定义模型集成
在优化后的镜像基础上,可以进一步集成自定义模型:
- 准备Modelfile定义模型配置
- 在Dockerfile中添加模型创建步骤
- 处理可能的企业网络代理问题(如Zscaler证书)
性能考量
需要注意的是,精简CUDA库可能会影响性能:
- 排除某些优化内核(如flash attention)会降低推理速度
- 需要根据实际应用场景权衡体积和性能
最佳实践建议
- 评估需求:明确需要哪些CUDA版本和功能
- 多阶段构建:有效控制最终镜像体积
- 分层优化:先保证功能完整,再逐步精简
- 测试验证:确保精简后的镜像仍能满足性能要求
通过以上方法,开发者可以构建出既轻量又满足需求的Ollama Docker镜像,为生产环境部署提供更多灵活性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133