优化Ollama Docker镜像体积的技术实践
2025-04-26 04:35:24作者:邓越浪Henry
背景介绍
Ollama是一个流行的开源项目,用于运行和管理大型语言模型。在实际部署中,用户经常需要构建自定义的Docker镜像来满足特定需求。本文探讨如何优化Ollama的Docker镜像体积,使其从原始大小缩减到1GB左右。
镜像体积分析
原始Ollama镜像的主要体积来源是CUDA库文件。通过分析发现:
- 总镜像大小约为3.3GB
- CUDA v11库占用1.15GB
- CUDA v12库占用2.03GB
- 核心库文件仅占用几MB
优化方案
方案一:选择性保留CUDA版本
通过多阶段构建,我们可以选择只保留必要的CUDA版本。例如,如果只需要CUDA v11,可以排除v12的库文件:
FROM ollama/ollama as base
FROM ubuntu:20.04
RUN apt-get update \
&& apt-get install -y ca-certificates \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
COPY --from=base /bin /usr/bin
COPY --from=base /lib/ollama/*.so /usr/lib/ollama/
COPY --from=base /lib/ollama/cuda_v11 /usr/lib/ollama/cuda_v11
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_VISIBLE_DEVICES=all
ENV OLLAMA_HOST=0.0.0.0:11434
EXPOSE 11434
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]
这种方案可以将镜像体积从3.3GB缩减到约1.34GB。
方案二:进一步精简
如果需要更小的体积,可以考虑:
- 使用更轻量的基础镜像(如Alpine Linux)
- 仅包含必要的CUDA组件
- 移除调试符号和不必要的文档
自定义模型集成
在优化后的镜像基础上,可以进一步集成自定义模型:
- 准备Modelfile定义模型配置
- 在Dockerfile中添加模型创建步骤
- 处理可能的企业网络代理问题(如Zscaler证书)
性能考量
需要注意的是,精简CUDA库可能会影响性能:
- 排除某些优化内核(如flash attention)会降低推理速度
- 需要根据实际应用场景权衡体积和性能
最佳实践建议
- 评估需求:明确需要哪些CUDA版本和功能
- 多阶段构建:有效控制最终镜像体积
- 分层优化:先保证功能完整,再逐步精简
- 测试验证:确保精简后的镜像仍能满足性能要求
通过以上方法,开发者可以构建出既轻量又满足需求的Ollama Docker镜像,为生产环境部署提供更多灵活性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
148
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19